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Anomalous Scaling of Hopf Bifurcation Thresholds for the Stability of Localized
Spot Patterns for Reaction-Diffusion Systems in Two Dimensions∗

J. C. Tzou† , M. J. Ward† , and J. C. Wei†

Abstract. For three specific singularly perturbed two-component reaction diffusion systems in a bounded two-
dimensional domain admitting localized multispot patterns, we provide a detailed analysis of the
parameter values for the onset of temporal oscillations of the spot amplitudes. The two key bifur-
cation parameters in each of the RD systems are the reaction-time parameter τ and the inhibitor
diffusivity D. In the limit of large diffusivity D = D0/ν � 1 with D0 = O(1), ν ≡ −1/ log ε, and ε2

denoting the activator diffusivity, a leading-order-in-ν analysis shows that the linear stability of mul-
tispot patterns is determined by the spectrum of a class of nonlocal eigenvalue problems (NLEPs).
The specific form for these NLEPs depends on whether τ = O(1) or τ � 1. For D0 < D0c, where
D0c > 0 is some critical threshold, we show from a new parameterization of the NLEP that no Hopf
bifurcations leading to temporal oscillations in the spot amplitudes can occur for any O(1) value of
the reaction-time parameter τ . This resolves a long-standing open problem in NLEP theory (see
[J. Wei and M. Winter, Mathematical aspects of pattern formation in biological systems, Appl. Math.
Sci. 189, Springer, 2014]). Instead, by deriving a new modified NLEP appropriate to the regime
τ � 1, we show for the range D0 < D0c that a Hopf bifurcation will occur at some τ = τH � 1,
where τH has the anomalous scaling law τH ∼ ν−1ε−τc � 1 for some τc satisfying 0 < τc < 2. The
anomalous exponent τc is calculated from the modified NLEP for each of the three RD systems.
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1. Introduction. In the large diffusivity ratio limit, two-component reaction-diffusion
(RD) systems can exhibit a surprisingly wide variety of two-dimensional (2-D) spatially lo-
calized structures including spot, stripe, and labyrinthian patterns, depending on the specific
form of the nonlinear reaction kinetics (cf. [21], [15], [16]). Localized spot patterns are those
for which one of the two solution components is highly localized at certain discrete points
in the 2-D domain. In the absence of any O(1) time-scale instability of the spot profile, the
spatial locations of the spots will typically evolve slowly toward some steady-state spot config-
uration. For a few specific RD systems in the singularly perturbed limit of a large diffusivity
ratio, localized spot patterns have been shown to exhibit various types of instabilities and dy-
namical behaviors such as spot self-replication, temporal oscillations in the spot amplitudes,
spot annihilation due to overcrowding, and slow spot drift (cf. [27], [10], [28], [29]. [30], [31],
[11], [3], [17], [9], [18], [19], [23]).
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In this paper we provide a detailed study of the onset of temporal oscillations in the spot
amplitudes for three prototypical singularly perturbed two-component RD systems in bounded
2-D domains, resolving a key open problem arising in the original linear stability analyses of
[27], [28], [29], [30], [31]. In the simpler 1-D setting, the conditions for the onset of oscillations
for localized spike solutions due to a Hopf bifurcation have been established for many RD
models. (See [5], [6], [25], [12], [2], [4], [20] and some of the references therein.) More recently,
[22] has developed a weakly nonlinear theory to unfold the Hopf bifurcation and determine
whether 1-D spike amplitude oscillations are subcritical or supercritical. In contrast to this
now well-studied 1-D problem, the corresponding problem for 2-D spot amplitude oscillations
is less well understood. By using a theoretical framework based on a nonlocal eigenvalue
problem (NLEP) we will discuss and then address a key open question regarding the onset of
spot amplitude oscillations for multispot patterns in 2-D domains.

Our analysis will be applied to three prototypical systems posed in a bounded 2-D domain
Ω. The first model is the standard Gierer–Meinhardt (GM) system (see [27])

(1.1) vt = ε2Δv − v + v2/u , τut = DΔu− u+ ε−2v2 , x ∈ Ω .

The second system is the nondimensional Gray–Scott (GS) model, given in the scaling regime
of [30] by

(1.2) vt = ε2Δv − v +Auv2 , τut = DΔu+ 1− u− ε−2uv2 , x ∈ Ω .

Lastly, in the scaling regime of [31], our third system is the nondimensional Schnakenberg
model given by

(1.3) vt = ε2Δv − v +Auv2 , τut = DΔu+ 1− ε−2uv2 , x ∈ Ω .

In each of these RD systems we impose the no-flux conditions ∂nv = 0 and ∂nu = 0 on ∂Ω.
In (1.2) and (1.3) we refer to A = O(1) as the feed-rate parameter.

In the limit ε → 0, each of these three RD systems admits localized N -spot quasi-
equilibrium solutions where v concentrates on a set of discrete points x1, . . . ,xN in Ω. For
these solutions, we will analyze the onset of spot amplitude temporal oscillations due to a Hopf
bifurcation as the reaction-time parameter τ exceeds a critical value. Our analysis will focus
on the regime, considered originally in [26], [27], [28], [29], [30], [31], where D = O(ν−1) � 1
with ν ≡ −1/ log ε. It is on this range of D where, to leading order in ν and for τ = O(1),
the linear stability properties of a quasi-equilibrium N -spot pattern are characterized by the
spectrum of a radially symmetric NLEP of the form

(1.4a) L0Ψ− χ(τλ)w2

∫∞
0 wΨρ dρ∫∞
0 w2ρ dρ

= λΨ ; Ψ′(0) = 0 , Ψ → 0 as ρ→ ∞ ,

where χ(z) is called the multiplier of the nonlocal term. Here Ψ = Ψ(ρ) and the local operator
L0 is defined by

(1.4b) L0Ψ ≡ ΔρΨ−Ψ+ 2wΨ ,
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where Δρ ≡ ∂ρρ + ρ−1∂ρ. In this NLEP, w(ρ) is the unique radially symmetric ground-state
solution satisfying

(1.4c) Δρw − w + w2 = 0 , 0 < ρ <∞ ; w(0) > 0 , w′(0) = 0 ; w → 0 as ρ→ ∞ .

The eigenvalues λ of the NLEP (1.4) in Re(λ) > 0 correspond to instabilities in the amplitudes
of the spots in the sense that, for some function Φj(ρ) related to Ψ(ρ) by an orthogonal
matrix Q involving the eigenvectors of an eigenvalue-dependent Green’s matrix (see (A.22) of
Appendix A), the perturbation to the quasi-equilibrium solution ve has the form

(1.5) v = ve +
N∑
j=1

cjΦj

[
ε−1|x− xj|

]
eλt .

For each of these three RD systems, in the asymptotic regime where τ = O(1) and
D = D0/ν � 1 with D0 = O(1), there are exactly two possible choices for the multiplier χ(z)
corresponding to either synchronous or asynchronous perturbations in the spot amplitudes
characterized by either (c1, . . . cN ) = (1, . . . , 1)T or

∑N
j=1 cj = 0, respectively (cf. [27], [28],

[29], [30], [31]). For the N − 1 distinct asynchronous modes, an analysis of the resulting
NLEP for each of these three RD systems [27], [28], [29], [30], [31] has proved that there is
a model-specific critical value D0c of D0 for which the multispot pattern is linearly stable to
asynchronous perturbations iff D0 < D0c. For D0 > D0c, this linear instability of the spot
amplitudes is referred to as a competition instability since, owing to

∑N
j=1 cj = 0, it preserves

the average spot amplitude. From full numerical computations of the RD systems this linear
instability mechanism has been found to trigger a nonlinear process through which one or
more spots are annihilated in finite time (cf. [3], [17], [19]).

For the synchronous mode, where cj = 1 for j = 1, . . . , N , for each of the three RD systems
the multiplier χ(z) of the NLEP is a bilinear function when D = D0/ν and τ = O(1). From
an analysis of the NLEP (1.4) with this bilinear multiplier, the synchronous mode is known to
undergo a Hopf bifurcation at some value τ = τH whenever D0 > D0c (cf. [27], [28], [29], [30],
[31]). As a result, on the range D0 > D0c where the asynchronous modes are unstable for any
τ > 0, an additional instability due to a Hopf bifurcation associated with the synchronous
mode will occur when τ exceeds some threshold τH . This threshold depends on D0 but is
independent of the spatial configuration of spots.

A key long-standing open problem in NLEP theory for 2-D spot patterns has been to
determine whether there is a Hopf bifurcation for the synchronous mode on the rangeD0 < D0c

where the asynchronous modes are linearly stable (cf. [33]). For D0 < D0c, and for each of
the three RD systems above, the rigorous NLEP results in [27], [28], [29], [30], [31] for the
synchronous mode have established that Re(λ) < 0 when either 0 < τ < τ2 or τ > τ3 for some
positive constants τ2 and τ3. Therefore, no Hopf bifurcations occur for the synchronous mode
when τ is either sufficiently small or large. Since it is unknown whether τ3 = τ2 or τ3 > τ2, a
central open problem (cf. [33]) in NLEP theory for 2-D spot patterns is to determine whether
a Hopf bifurcation can occur for some intermediate range of τ when D0 < D0c.

For each of the three RD systems we will use a combination of analytical and numerical
methods, based on the NLEP (1.4), to show that there is no O(1) Hopf bifurcation threshold
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value of τ for the synchronous mode when D0 < D0c. By rederiving and then analyzing a
new class of NLEPs appropriate to the regime D = D0/ν � 1, but with τ � 1, we will
show analytically that when D0 < D0c there is a Hopf bifurcation threshold τH of τ with the
anomalous scaling τH ∼ ν−1ε−τc � 1 for some τc satisfying 0 < τc < 2. The key implication
of our main result is that when D < D0c/ν and for any τ = O(1), quasi-equilibrium multispot
patterns are linearly stable on O(1) time-scales and will therefore exhibit slow spot dynamics
(cf. [3], [11], [10]) toward a true steady-state configuration.

A detailed outline of this paper is as follows:
In section 2 we develop a new rigorous winding number approach to analyze the NLEP

(1.4) when the multiplier χ(z) is a bilinear function. As discussed above, such a bilinear
multiplier is relevant for analyzing the linear stability of multispot patterns for our three
RD systems when D = D0/ν � 1 and τ = O(1). We derive some new specific conditions
in terms of the coefficients in the bilinear multiplier that determine the number of unstable
eigenvalues in Re(λ) > 0 of the NLEP (1.4). These results are then applied to our three RD
systems, but are not sufficiently refined for resolving whether there is a Hopf bifurcation for
the synchronous mode when D0 < D0c.

To address this issue for each of our three RD systems, in section 2 we formulate and
numerically implement a new parameterization of any Hopf bifurcation threshold τH of τ for
the NLEP (1.4) with a bilinear multiplier. For D0 > D0c our parameterization shows that
there is a unique Hopf threshold τ = τH on D0 > D0c with corresponding Hopf eigenvalue
λ = iλIH and λIH > 0. As D0 → D+

0c we will show that τH → +∞ and λIH → 0+ and derive
a new analytical scaling law for this limiting behavior. Most importantly, however, is that our
new parameterization reveals that there is no O(1) Hopf bifurcation threshold value of τ for
the synchronous mode when D0 < D0c. Thus, we conclude from this leading-order-in-ν NLEP
theory that N -spot quasi-equilibrium patterns are linearly stable for any τ = O(1) whenever
D < D0c/ν.

Motivated by our observation that τH → +∞ as D0 → D+
0c, in section 3 we analyze a

new class of NLEPs, not considered previously in [27], [28], [29], [30], [31], which is relevant
to the asymptotic regime D = O(ν−1), τ � 1 with τλ/D � 1. The asymptotic derivation
of these new modified NLEPs for each of the three models is given in the three appendices.
By analyzing these modified NLEPs for each of the three RD systems, in sections 3.1–3.3 we
will show that when D0 < D0c there is a Hopf bifurcation threshold τH with the anomalous
scaling τH ∼ ν−1ε−τc for some τc in 0 < τc < 2. An asymptotic expansion for this anomalous
exponent τc and for the corresponding Hopf eigenvalue will be derived for each of three RD
systems. This anomalous exponent is found to be independent of the spatial configuration of
spots.

Our asymptotic result for the anomalous Hopf bifurcation threshold is not uniformly
valid as D0 → D−

0c, since our analysis of the anomalous exponent requires that the strict
inequality τc > 0 must hold. For D0 → D−

0c, the Hopf threshold τH does depend on the
spatial configuration of the spots. For the GM (1.1) and Schnakenberg (1.3) systems, in
section 4 we numerically compute the Hopf bifurcation threshold from the modified NLEP for
the simple spatial configuration of a ring pattern of spots inside the unit disk.

For the Schnakenberg model (1.3), in section 5 we extend the leading-order-in-ν NLEP
theory to derive a globally coupled eigenvalue problem (GCEP) that characterizes the linear
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stability of multispot patterns, while accounting for all terms in powers of ν. Although the
study of this GCEP is intractable analytically, we numerically compute from it the Hopf
bifurcation threshold for a ring pattern of spots in the unit disk. The resulting asymptotic
prediction of the Hopf threshold for spot amplitude oscillations is then favorably compared
with full numerical results computed from the Schnakenberg model (1.3) using FlexPDE6 [7].
Finally, in section 6, we conclude with a brief discussion.

2. A class of NLEPs with a bilinear multiplier. For the parameter range where D =
O(ν−1) with ν ≡ −1/ log ε and for τ = O(1), the linear stability on an O(1) time-scale of
N -spot quasi-equilibrium solutions for either (1.1), (1.2), or (1.3) can be reduced to the study
of an NLEP of the form (1.4a), where the multiplier χ(τλ) of the nonlocal term is a bilinear
function of λ of the form

(2.1) χ(τλ) =
c+ dτλ

e+ fτλ
,

where c, d, e, and f are real positive constants and τ ≥ 0. It is then readily shown that the
discrete eigenvalues of (1.4) are the roots λ of g(λ) = 0, defined by

(2.2) g(λ) = C(λ)−F(λ) ,

where

(2.3) C(λ) ≡ 1

χ(τλ)
=
e+ fτλ

c+ dτλ
, F(λ) ≡

∫∞
0 w

[
(L0 − λ)−1 w2

]
ρ dρ∫∞

0 w2ρ dρ
.

To calculate the number M of discrete eigenvalues of (1.4) in Re(λ) > 0, we use the
argument principle of complex analysis to determine the number of zeroes of g(λ) in Re(λ) > 0.
We determine the winding number of g over the counterclockwise contour composed of the
imaginary axis −iRc ≤ Imλ ≤ iRc and the semicircle ΓRc , given by |λ| = Rc > 0 for
|arg|λ ≤ π/2, and then let Rc → +∞. Since c > 0 and d > 0 in (2.3), C(λ) is analytic in
Re(λ) > 0. In contrast, F(λ) is analytic in Re(λ) > 0 except at the simple pole λ = ν0 > 0,
where ν0 is the unique positive eigenvalue of L0 (see Theorem 2.12 of [14]). For Rc → ∞, we
have on ΓRc that |C(λ)| is bounded and |F(λ)| = O (1/|λ|) 
 1. As such, there is no change
in the argument of g over ΓRc as Rc → ∞. Then, by using g(λ) = g(λ), and assuming that
there are no zeros of g(λ) on the imaginary axis, we get

(2.4) M = 1 +
1

π
[arg g]ΓI

,

where [arg g]ΓI
denotes the change in the argument of g along the semi-infinite imaginary axis

ΓI = iλI with 0 ≤ λI <∞, traversed in the downward direction.
To calculate [arg g]ΓI

, where λ = iλI with 0 < λI <∞, we decompose g(iλI) into real and
imaginary parts, as g(iλI) = gR(λI) + igI(λI), to get

(2.5) gR(λI) = CR(λI)−FR(λI) , gI(λI) = CI(λI)−FI(λI) ,
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where

CR(λI) = ec+ dfτ2λ2I
c2 + d2τ2λ2I

, FR(λI) ≡
∫∞
0 ρwL0

[
L2
0 + λ2I

]−1
w2 dρ∫∞

0 ρw2 dρ
,(2.6a)

CI(λI) = τλI(fc− de)

c2 + d2τ2λ2I
, FI(λI) ≡ λI

∫∞
0 ρw

[
L2
0 + λ2I

]−1
w2 dρ∫∞

0 ρw2 dρ
.(2.6b)

As established rigorously in [24], FR and FI have the following qualitative properties:

FR(λI) ∼ 1− κcλ
2
I + · · · , as λI → 0+ ; F ′

R(λI) < 0 for λI > 0 ; FR(∞) = 0 ,

(2.7a)

FI(λI) ∼ λI/2 , as λI → 0+ ; FI(λI) > 0 for λI > 0 ; FI(∞) = 0 ,
(2.7b)

where κc > 0 is given by

(2.7c) κc ≡
∫∞
0 ρ (w + ρw′/2)2 dρ∫∞

0 ρw2 dρ
≈ 0.436 .

The numerical value for κc was obtained by computing the ground-state w(ρ) in (1.4c) numer-
ically. With these basic properties we now establish a few key results for the discrete spectrum
of (1.4).

Lemma 2.1. Let τ > 0 and suppose that CR(0) = e/c < 1 and e/c > CR(∞) = f/d. Then,
M = 0, and so any discrete eigenvalue of (1.4) satisfies Re(λ) < 0. In addition, if τ = 0 and
e/c < 1, then Re(λ) < 0.

Proof. Let τ > 0. We have g(0) = e/c−1 < 0 and g(i∞) = f/d > 0, and since fc−de < 0
we have upon using (2.7) and (2.6) that Im(g(iλI)) = gI(λI) < 0 for any λI > 0. This proves
that [arg g]ΓI

= −π. Therefore, M = 0 from (2.4), and so Re(λ) < 0 for any eigenvalue of
(1.4).

If τ = 0, we have g(0) = e/c− 1 < 0 and g(i∞) = e/c > 0, and gI(λI) = −FI(λI) < 0 for
all λI > 0. Thus, [arg g]ΓI

= −π, and M = 0 from (2.4). Hence, Re(λ) < 0 for any eigenvalue
of (1.4).

We now establish a condition for which there is a unique positive real eigenvalue for the
NLEP (1.4).

Lemma 2.2. Suppose that e/c > 1. If τ = 0, then M = 1. If τ > 0 and f/d > 1, then
M = 1 for all τ > 0.

Proof. If e/c > 1 and τ = 0, then from (2.7) and (2.6), we get g(0) = e/c − 1 > 0 and
g(i∞) = e/c > 0. Since g′R(λI) > 0, owing to the fact that F ′

R < 0 from (2.7), we conclude
that gR(λI) > 0 for λI > 0. Therefore, [arg g]ΓI

= 0 and so from (2.4) we get M = 1. If τ > 0,
CR(0) = e/c > 1, and CR(∞) = f/d > 1, then since CR(λI) is either monotonically increasing
or decreasing, we have CR(λI) > 1 for all λI ≥ 0. Since FR(0) = 1 and FR(λI) is monotone
decreasing on λI > 0, it follows that gR(λI) > 0 on λI ≥ 0. As a result, [arg g]ΓI

= 0, and so
from (2.4) we get M = 1.
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Lemma 2.3. Let τ > 0 and suppose that CR(0) = e/c < 1 and e/c < f/d = CR(∞). Then,
either M = 0 or M = 2. If 0 < τ 
 1, then M = 0. In contrast, if τ � 1, then M = 2 when
f/d > 1 and M = 0 when f/d < 1.

Proof. Since, from (2.6), CR(λI) is monotone increasing, while from (2.7), FR(λI) is mono-
tone decreasing, and then gR(λI) = 0 has a unique root λ�I > 0. We have g(0) = e/c − 1 < 0
and g(i∞) = f/d > 0. If gI(λ

�
I) < 0, then [arg g]ΓI

= −π, and M = 0 from (2.4), while if
gI(λ

�
I) > 0, then [arg g]ΓI

= π, and M = 2.
If 0 < τ 
 1, we obtain that λ�I = O(1), but CI(λ∗I) = O(τ) 
 1 from (2.6). Therefore,

from (2.7) we have gI(λ
�
I) = −FI(λ

�
I) + O(τ) < 0, which yields M = 0. Next, suppose that

τ � 1. If f/d > 1, then the unique root λ�I > 0 to gR(λI) = 0 satisfies λ�I = O(τ−1) 
 1.
Since fc − de > 0, we have CI(λ�I) = O(1) > 0 and FI(λ

�
I) = O(τ−1) from (2.6) and (2.7).

This yields that gI(λ
�
I) > 0, and consequently M = 2. Alternatively, if τ � 1 and f/d < 1,

then λ�I = O(1) and CI(λ�I) = O(τ−1) 
 1. This yields that gI(λ
�
I) < 0, so that M = 0.

Lemma 2.3 establishes that Re(λ) < 0 for τ � 1 whenever c/e > 1 and d/f > 1. The next
result establishes a precise bound on τ for which Re(λ) < 0 holds in this parameter regime.

Lemma 2.4. Suppose that e/c < 1 and f/d < 1. Then, any discrete eigenvalue of (1.4)
satisfies Re(λ) < 0 when τ > τB ≡ 2(cf − ed)/[3(d − f)2].

Proof. From equation (5.62) of [32], we have that if λR = Re(λ) ≥ 0, then

(2.8)

(∫∞
0 ρw3 dρ∫∞
0 ρw2 dρ

) ∣∣χ(τλ)− 1
∣∣2 +Re

[
λ̄ (χ(τλ)− 1)

] ≤ 0 .

Since
∫∞
0 ρw3 dρ/

∫∞
0 ρw2 dρ = 3/2 (see (B.1) and (B.5) of [24]), and upon defining z ≡ τλ,

(2.8) becomes

(2.9)
3

2

∣∣χ(z)− 1
∣∣2 + 1

τ
Re [z̄ (χ(z)− 1)] ≤ 0 .

Then, upon using χ(z) − 1 = [(c− e) + (d− f)z]/(e + fz), we calculate from (2.9) that if
zR ≥ 0, then

3

2

∣∣c− e+ (d− f)z
∣∣2 + 1

τ
Re [z̄ (c− e+ (d− f)z) (e+ f z̄)] ≤ 0 ,

3

2

∣∣c− e+ (d− f)z
∣∣2 + 1

τ
Re
[
f(d− f)z̄|z|2 + e(d− f)|z|2 + (c− e)f z̄2 + e(c− e)z̄

] ≤ 0 .

Therefore, if zR ≥ 0, then

(2.10)
3

2
(c− e+ (d− f)zR)

2 +
1

τ
zRf(d− f)|z|2 + 1

τ
(c− e)fz2R +

1

τ
e(d− f)z2R

+
e

τ
(c− e)zR + z2I

[
3

2
(d− f)2 − 1

τ
(cf − ed)

]
≤ 0 .

If c/e > 1, zR ≥ 0, and d/f > 1, then the first term is positive, and all remaining terms
in (2.10) except the last one are nonnegative. Hence, we have a contradiction to zR ≥ 0 if
3(d− f)2/2 ≥ (cf − ed)/τ . Thus, if τ > τB ≡ 2(cf − ed)/[3(d − f)2], then Re(λ) < 0.
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2.1. The Gierer–Meinhardt model. In [27] the linear stability on an O(1) time-scale of
an N -spot quasi-equilibrium pattern for the GM model (1.1) was analyzed in the parameter
regime D = O(ν−1) with ν ≡ −1/ log ε
 1, and where τ > 0 satisfies τ = O(1) as ε→ 0. To
leading order in ν, it was proved in [27] that the linear stability of an N -spot pattern on an
O(1) time-scale is determined by the spectrum of (1.4) where χ has either of the two possible
forms

(2.11) χa ≡ 2

1 + μ
, χs =

2

1 + μ

(
1 + μ+ τλ

1 + τλ

)
, where μ ≡ 2πND0

|Ω| .

Here D0 ≡ Dν and |Ω| is the area of Ω. The multipliers χa and χs correspond to either
asynchronous or synchronous perturbations of the spot amplitudes, respectively (see [27]).

For the asynchronous mode, with multiplier χa, we identify from (2.1) that e/c = (1 + μ)/2
and τ = 0. Since e/c < 1 iff μ < 1, we conclude from the second statement of Lemma 2.1
that Re(λ) < 0 when 0 < μ < 1. Alternatively, when μ > 1, the first statement of Lemma 2.2
proves that there is a unique real unstable eigenvalue in Re(λ) > 0. Therefore, μ = 1 is the
stability threshold for the asynchronous modes.

Next, consider the synchronous mode, with multiplier χs given in (2.11). From (2.1) we
identify that e/c = 1/2 and f/d = (1 + μ)/2. Since e/c < 1 and e/c < f/d for all μ > 0,
we conclude from the first statement of Lemma 2.3 that Re(λ) < 0 for 0 < τ 
 1. Since
f/d > 1 iff μ > 1, we conclude from the second statement of Lemma 2.3 that if μ > 1, there
are exactly two discrete eigenvalues of (1.4) in Re(λ) > 0 when τ � 1. Since the multiplier
χs in the NLEP depends on the product τλ, eigenvalues cannot enter Re(λ) > 0 through the
origin λ = 0 as τ is increased. Therefore, by continuity in τ , there must be a Hopf bifurcation
(HB) value of τ and complex conjugate eigenvalue pair λ = ±iλIH with λIH > 0, possibly
nonunique, for the synchronous mode when μ > 1. Alternatively if 0 < μ < 1, for which
f/d < 1, we conclude from Lemma 2.3 that Re(λ) < 0 when τ � 1. More precisely, Lemma
2.4 yields the bound that Re(λ) < 0 when τ > τB = 4μ/[3(1 − μ)2].

A key open question, unresolved from the analysis above or in [27], is whether there is
an HB value of τ for the synchronous mode when 0 < μ < 1. Our rigorous results above,
and obtained in [27], establish that Re(λ) < 0 on 0 < μ < 1 whenever τ is either sufficiently
small or sufficiently large. The open question of [27] for the synchronous mode is to establish
whether or not Re(λ) < 0 for all τ > 0 when 0 < μ < 1.

We examine this open question numerically, by developing a new parameterization of any
HB value τ = τH(μ), as obtained by setting g(iλI) = 0 in (2.5) with (2.11) for χs, which yields

(2.12)
(1 + μ)

2

(
1 + iτλI

1 + μ+ iτλI

)
= FR(λI) + iFI(λI) .

We let μ = μ(λI) and τH(λI) for λI > 0, and after separating (2.12) into real and imaginary
parts, we obtain the parameterization

(2.13) μ =

(
4|F|2 + 1−FR

)
2FR − 1

, τH =
2|F|2 −FR

λIFI
,

where |F|2 = F2
R + F2

I . Here we have labelled FR ≡ FR(λI) and FI ≡ FI(λI).
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Figure 1. Plot of the HB threshold τH (left panel) and imaginary eigenvalue λIH (right panel) versus μ
for the synchronous mode of instability for the GM model, as obtained from (2.13). There is no HB threshold
for μ < 1, and τH → +∞ while λIH → 0+ as μ → 1+. The inserts validate the asymptotic results of (2.14)
(dashed curves) for τH and λIH as μ → 1+.

By varying λI on 0 < λI <∞, and numerically computing FR and FI from (2.6), we obtain
the Hopf bifurcation curve in the μ > 0 and τ > 0 parameter plane as shown in Figure 1(a).
The corresponding eigenvalue, denoted by λIH , is plotted versus μ in Figure 1(b). From
Figure 1(a), (b), we observe that there is a unique HB threshold τH for the synchronous
mode only on the range μ > 1 and that τH → +∞ and λIH → 0+ as μ → 1+. Since our
computations show that there is no HB threshold value of τ for the range 0 < μ < 1, we
conclude that the synchronous mode is linearly stable when μ < 1 for any τ > 0, which
resolves the open problem of [27]. Since the asynchronous mode is also linearly stable when
0 < μ < 1, as we showed above, we conclude that, for any τ > 0 independent of ε, an N -spot
quasi-equilibrium pattern is linearly stable on the parameter regime D = O(ν−1) whenever
D0 < |Ω|/(2πN), where D = D0/ν.

The asymptotic behavior as μ→ 1+ and in the shadow-limit μ→ ∞ of the HB threshold in
Figure 1 is readily established. For μ→ +∞, we have that λIH → λIH∞, where λIH∞ ≈ 1.59
is the unique root of FR(λI) = 1/2. The uniqueness of this root follows from the monotonicity
property of FR in (2.7). This yields from (2.13) that τH → τH∞ ≡ 2FI(λIH∞)/λIH∞ ≈ 0.563
as μ → ∞. Now for μ → 1+, for which λIH → 0, we use the local behavior as λI → 0 of
FR and FI given in (2.7b) to readily derive from (2.13) that μ ∼ 1 + λ2I(1 − 2κc) + · · · and
τH ∼ 2/λ2I . In terms of κc ≈ 0.436, as defined in (2.7c), this yields the limiting behavior

(2.14) τH ∼ 2(1− 2κc)

μ− 1
, λIH ∼

√
μ− 1

1− 2κc
, as μ→ 1+ .

2.2. The Schnakenberg model. In [31] the linear stability of an N -spot quasi-equilibrium
pattern for the Schnakenberg model (1.3) was analyzed for the parameter range D = O(ν−1)
with ν ≡ −1/ log ε 
 1, where τ = O(1) as ε → 0. To leading order in ν, the analysis in
[31] proved that the linear stability of an N -spot pattern on an O(1) time-scale is determined
by the spectrum of (1.4), where there are two choices for the multiplier χ, corresponding to
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either asynchronous, χa, or synchronous, χs, perturbations of the spot amplitudes. These
multipliers are given by

(2.15) χa ≡ 2

1 + α
, χs =

2 (μ+ τλ)

μ+ (α+ 1)τλ
, where μ ≡ 2πND0

|Ω| , α ≡ 4π2bD0N
2

|Ω|2A2
.

Here D = D0/ν, |Ω| is the area of Ω, and b ≡ ∫∞
0 ρw2 dρ ≈ 4.935, where w(ρ) is the ground-

state of (1.4c).
For the asynchronous mode with multiplier χa, (2.1) yields that e/c = (1 + α)/2 and

τ = 0. From Lemmas 2.1 and 2.2 we conclude that Re(λ) < 0 iff α < 1 and that there is a
unique unstable real eigenvalue of (1.4) when α > 1. By using (2.15) for α, we conclude that
an N -spot quasi-equilibrium pattern is linearly stable to asynchronous perturbations in the
spot amplitudes iff

(2.16) A > Ac ≡ 2πN

|Ω|
√
bD0 , b ≡

∫ ∞

0
ρw2 dρ ≈ 4.935 .

Next, we consider the synchronous mode with multiplier χs. From (2.15) and (2.1) we
identify that e/c = 1/2, f/d = (1 + α)/2, and so e/c < f/d for all α > 0. From Lemma 2.3
we conclude that Re(λ) < 0 for 0 < τ 
 1. In addition, for α > 1 there are exactly two
discrete eigenvalues of (1.4) in Re(λ) > 0 when τ � 1, and so by continuity in τ there must
be an HB value of τ , possibly nonunique, for the synchronous mode when α > 1. In contrast,
when 0 < α < 1, Lemma 2.3 yields that Re(λ) < 0 when τ � 1.

This qualitative behavior of an HB threshold for the Schnakenberg model is identical to
that for the GM model considered in (2.2). The key open question, unresolved from the
analysis above or in [31], is whether there is an HB threshold for τ for the synchronous mode
when 0 < α < 1.

To address this question numerically, we seek a parameterization of any HB value τ =
τH(α) by setting g(iλI) = 0 in (2.5) with (2.15) for χs. This involves taking the real and
imaginary parts of

(2.17)
(α+ 1)τλI + μ

2μ+ 2iτλI
= FR(λI) + iFI(λI) .

With this characterization, and analogous to (2.13), we readily obtain the following parametric
description of the HB threshold in the form α = α(λI) and τH(λI) for λI > 0:

(2.18) α =

(
4|F|2 + 1−FR

)
2FR − 1

, τH =
μ (2FR − 1)

2λIFI
.

By using the local behavior for FR and FI as λI → 0 given in (2.7b), we calculate from (2.18)
that

(2.19) τH ∼ μ(1− 2κc)

α− 1
, λIH ∼

√
α− 1

1− 2κc
, as α→ 1+ .

By using the parameterization (2.18), in Figure 2 we plot the HB threshold τH and corre-
sponding eigenvalue λIH versus α for a fixed value μ = 2. These results show that there is a
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Figure 2. Plot of the HB threshold τH (left panel) and imaginary eigenvalue λIH (right panel) versus α for
the synchronous mode of instability for the Schnakenberg model when μ = 2, as obtained from (2.18). There is
no HB threshold for α < 1, and τH → +∞ while λIH → 0+ as α → 1+. The asymptotic results given in (2.19)
(dashed curves) for τH and λIH as α → 1+ shown in the two inserts agree well with the numerical results from
(2.18).

unique HB threshold for the synchronous mode only on the range α > 1 and that the limiting
asymptotic behavior in (2.19) as α → 1+ agrees well with the numerical results from (2.18).
There is no HB threshold value of τ for the range 0 < α < 1 for the synchronous mode, and
so we conclude for this mode that Re(λ) < 0 when 0 < α < 1 for any τ > 0. Owing to the
fact that the asynchronous mode is also linearly stable when 0 < μ < 1, we conclude that, for
any τ > 0 with τ = O(1), an N spot quasi-equilibrium pattern is linearly stable on an O(1)
time-scale on the parameter regime D = O(ν−1) when A > Ac, where Ac is defined in (2.16).

2.3. The Gray–Scott model. In [30] the linear stability of an N -spot quasi-equilibrium
pattern for the GS model (1.2) was analyzed for the parameter range D = O(ν−1) and
A = O(1) with ν ≡ −1/ log ε 
 1, where τ = O(1) as ε → 0. A key feature of the
GS model in this regime is that quasi-equilibrium multispot patterns exhibit a saddle-node
bifurcation structure in which the feed-parameter A is related to the common spot amplitude,
characterized by the parameter S0, through the nonlinear algebraic equation (see Appendix
B)

(2.20) A0μ
1/2 = (1 + μ)S0 +

b

S0
, μ ≡ 2πND0

|Ω| , A0 ≡ A
√

|Ω|
2πN

.

Here D = D0/ν and b ≡ ∫∞
0 ρw2 dρ ≈ 4.935, where w(ρ) is the ground-state satisfying

(1.4c). For μ = 2, the bifurcation diagram of S0 versus A0 is shown in Figure 3. The saddle-

node bifurcation point where dA0/dS0 = 0 occurs at A0 = A0f ≡ 2 [b(1 + μ)/μ]1/2 when

S0 = S0f ≡ [b/(1 + μ)]1/2.
At each point on the bifurcation curve (2.20), the linear stability of the N -spot quasi-

equilibrium pattern on an O(1) time-scale is characterized by the spectrum of the NLEP
(1.4), where the multiplier χ has, once again, two distinct forms corresponding to either
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Figure 3. The bifurcation diagram of the common spot amplitude, measured by S0, versus the feed-rate
parameter A0 from (2.20) for the GS model with μ = 2. The saddle-node point is at S0 = S0f = [b/(1 + μ)]1/2

and A0 = A0f ≡ 2 [b(1 + μ)/μ]1/2, where b ≈ 4.935. On the upper (solid) branch, where S0 > S0c ≡ √
b,

the asynchronous mode is linearly stable, and the synchronous is linearly stable for all τ > 0. On the middle
(dashed) portion, where S0f < S0 < S0c, the asynchronous mode is unstable, and the synchronous mode
undergoes a Hopf bifurcation at some τ = τH(S0) > 0. On the lower (dashed-dotted) branch, where S0 < S0f ,
the asynchronous mode is unstable, and the synchronous mode is unstable for any τ ≥ 0.

asynchronous or synchronous perturbations of the spot amplitudes (see Appendix B). These
multipliers are

(2.21) χa ≡ 2S2
0

b+ S2
0

, χs =
2S2

0 (1 + μ+ τλ)

b(1 + τλ) + S2
0(1 + μ+ τλ)

.

For the asynchronous mode with multiplier χa, we compare (2.21) and (2.1) to identify
that e/c = (b+ S2

0)/[2S
2
0 ] and τ = 0. We calculate e/c > 1 iff S0 < S0c ≡

√
b. From Lemma

2.1 and the first statement of Lemma 2.2 we conclude that Re(λ) < 0 when S0 > S0c and that
there is a unique unstable real eigenvalue of (1.4) whenever S0 < S0c. As shown in Figure 3
it is only along the solid-shaded portion of the bifurcation curve that the N -spot pattern is
linearly stable to asynchronous perturbations. We refer to S0c ≡

√
b, and the corresponding

feed-rate value A0 = A0c ≡ (2 + μ)
√
b/μ, as the competition-stability threshold.

For the synchronous mode with multiplier χs, we compare (2.21) and (2.1) to identify e/c
and f/d as

(2.22)
e

c
=

1

2
+

b

2S2
0(1 + μ)

,
f

d
=

1

2
+

b

2S2
0

.

Since μ > 0, it follows that e/c < f/d. We observe that e/c < 1 iff S0 > S0f , whereas f/d < 1
iff S0 > S0c. On the lower branch (dashed-curve) of the bifurcation curve in Figure 3 where
S0 < S0f we have 1 < e/c < f/d. From the second statement of Lemma 2.2 we conclude
that the NLEP (1.4) has a unique positive real eigenvalue for any τ ≥ 0. Therefore, this
lower solution branch is unconditionally unstable to synchronous perturbations of the spot
amplitudes. Next, along the middle branch (dashed-dotted curve) of the bifurcation curve of
Figure 3 where S0f < S0 < S0c, we have e/c < 1 while f/d > 1. We conclude from Lemma
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2.3 that Re(λ) < 0 when τ 
 1 and that there are exactly two discrete eigenvalues of (1.4)
in Re(λ) > 0 when τ � 1. Therefore, along this middle branch, where S0f < S0 < S0c, there
must be an HB value of τ , possibly nonunique, for the synchronous mode. A parameterization
for this Hopf bifurcation curve is given below in (2.24). Finally, along the upper branch (solid
curve) of the bifurcation curve of Figure 3 where S0 > S0c, in which the asynchronous mode
is linearly stable, we have e/c < f/d < 1. We conclude from Lemma 2.3 that Re(λ) < 0 when
0 < τ 
 1 and when τ � 1 with no stability information for intermediate values of τ .

The primary open question, unresolved in this analysis and that in [30], is to determine
whether there is an HB threshold for τ for the synchronous mode along the upper solution
branch when S0 > S0c. For this range of S0, we recall that the asynchronous mode is linearly
stable.

To study this question, we numerically seek a parameterization of any HB threshold in the
form τ = τH(λI) and S0 = S0(λI), which implicitly yields τ = τH(S0). By setting g(iλI) = 0
in (2.5), we obtain from (2.21) with χs the complex-valued equation

(2.23)
S2
0(1 + μ+ iτλI) + b(1 + iτλI)

2S2
0(1 + μ+ iτλI)

= FR(λI) + iFI(λI) ,

which yields

1 + μ+
b

S2
0

= 2(1 + μ)FR − 2τλIFI , τλI

(
b

S2
0

+ 1

)
= 2FI(1 + μ) + 2τλIFR .

By eliminating τλI , we obtain a quadratic equation for b/S2
0 , which has two possible roots.

After some algebraic simplification we obtain that

τH =
1

4λIFI

[
μ (2FR − 1)∓

√
μ2 (2FR − 1)2 − 16F2

I (1 + μ)

]
,(2.24a)

S0 =
√
b

[
(2FR − 1)

(
1 +

μ

2

)
± 1

2

√
μ2 (2FR − 1)2 − 16F2

I (1 + μ)

]−1/2

.(2.24b)

By sweeping in λI and using (2.24), in Figure 4 we plot the HB threshold τH and corre-
sponding eigenvalue λIH versus S0 for a fixed value μ = 2. Our results show that a unique
HB threshold occurs for the synchronous mode only on the middle (dashed) branch of the
bifurcation curve in Figure 3 for which S0f < S0 < S0c. There is no HB value of τ for the
synchronous mode on the upper branch where S0 > S0c. As a remark, in our sweep in λI using
(2.24), both choices of the sign in (2.24) were needed to cover the full range S0f < S0 < S0c
with the discriminant of the square root vanishing at the intermediate value λI ≈ 0.4962 when
μ = 2.

Finally, we use (2.24) to determine the limiting behavior as S0 → S+
0f and as S0 → S−

0c of
the HB threshold τH , as observed in Figure 4(a). To calculate the limiting behavior of τH as
S0 → S+

0f , we substitute the local behavior for FR and FI as λI → 0 from (2.7b) into (2.24a)

and choose the minus sign. Then, by using the asymptotic estimate x − √
x2 − h ∼ h/(2x)
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Figure 4. Plot of the HB threshold τH (left panel) and imaginary eigenvalue λIH (right panel) versus S0

for the synchronous mode of instability for the GS model on the interval S0f < S0 < S0c when μ = 2, as
obtained from (2.24). There is no HB threshold for S0 > S0c, and τH → +∞ while λIH → 0+ as S0 → S−

0c.
The asymptotic results given in (2.25b) (dashed curves) for τH and λIH as S0 → S−

0c shown in the two inserts
agree well with the numerical results from (2.24).

for h
 1 and x > 0 with x = O(1), we obtain

τH = lim
λI→0

1

2λ2I

[
μ
(
1− 2κcλ

2
I

)−√μ2 (1− 2κcλ
2
I

)2 − 4λ2I(1 + μ)

]

= lim
λI→0

1

2λ2I

[
4λ2I(1 + μ)

2μ
(
1− 2κcλ

2
I

)
]
.

This yields that

(2.25a) τH → (1 + μ)

μ
, as S0 → S+

0f ≡
√

b

1 + μ
.

For μ = 2, this yields τH → 1.5 as S0 → S+
0f and is consistent with the results in Figure 4(a).

Next, we consider the limiting behavior for τH and λIH as S0 → S−
0c. We use the local behavior

for FR and FI as λI → 0 in (2.24b) with the plus sign and in (2.24a) with the minus sign.
This leads to b/S2

0 ∼ 1+λ2I
(
1− 2κc + μ−1

)
and τH ∼ μ/λ2I . This yields the limiting behavior

(2.25b) λIH ∼
√

b− S2
0

S2
0 (1− 2κc + μ−1)

, τH ∼ S2
0 [1 + μ(1− 2κc)]

b− S2
0

, as S0 → S−
0c .

In the inserts of Figure 4, this limiting behavior in (2.25b) is favorably compared with numerical
results computed from the parameterization (2.24).

3. Anomalous scaling of the Hopf bifurcation threshold. The central result of section
2 for the GM, Schnakenberg, and GS models is that, for the range D = D0/ν and τ = O(1),
there is no synchronous oscillatory instability of the spot amplitudes for an N -spot quasi-
equilibrium pattern in the parameter range where the asynchronous mode is linearly stable.
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However, the key limitation on the NLEP analysis in section 2 is that the bilinear multiplier
χ in (2.1) is valid only under the assumption that D = O(ν−1) and τ = O(1). Since the HB
threshold τH was found in section 2 to become unbounded at the edge of the instability
threshold for the asynchronous mode, this suggests that we need to rederive the appropriate
form of the NLEP and its multiplier for the case where τ can be asymptotically large as ε→ 0.
By studying this modified NLEP problem we will show that there is an HB theshold τH , for
which τH → ∞ as ε → 0, in the parameter range where the asynchronous mode is linearly
stable.

3.1. The Gierer–Meinhardt model. As shown in Appendix C, the modified NLEP prob-
lem for Ψ = Ψ(ρ), valid for D = D0/ν and arbitrary τ , is

(3.1a) L0Ψ− σj(λ)w
2

∫∞
0 wΨρ dρ∫∞
0 w2ρ dρ

= λΨ , Ψ → 0 as ρ→ ∞ ,

where the local operator L0 is defined in (1.4b), and where w(ρ) is the ground-state solution
satisfying (1.4c). In (3.1a), there are N choices of the multiplier σj(λ), given by

(3.1b) σj(λ) =
2

1 + μ
(1 + 2πνκλ,j) , j = 1, . . . , N ; μ ≡ 2πND0

|Ω| .

Here D = D0/ν and κλ,j are the eigenvalues of the λ-dependent Green’s matrix Gλ given by

(3.2) Gλvj = κλ,jvj , j = 1, . . . , N .

The entries of this Green’s matrix are obtained from the reduced-wave Green’s function
Gλ(x;xi), defined by

ΔGλ − θ2λGλ = −δ(x − xi) , x ∈ Ω ; ∂nGλ = 0 , x ∈ ∂Ω ,(3.3a)

Gλ(x;xi) = − 1

2π
log |x− xi|+Rλ,i + o(1) , as x → xi ,(3.3b)

where Rλ,i is the regular part of Gλ(x;xi) at x = xi. Here θ2λ ≡ ν(1 + τλ)/D0. In (3.2),
and in terms of the spatial configuration x1, . . . ,xN of the localized spots, the entries of the
symmetric N ×N Green’s matrix Gλ are

(3.4) (Gλ)ij = Gλ(xj ;xi) , i �= j ; (Gλ)jj = Rλ,j .

We first show how to recover the NLEP for the GM model given by (1.4a), where the two
multipliers are given in (2.11). For τ = O(1), we readily calculate from (3.3) that for ν 
 1

(3.5) Gλ =
D0

ν(1 + τλ)|Ω| +G0 +O(ν) , Rλ =
D0

ν(1 + τλ)|Ω| +R0 +O(ν) ,

where G0 is the Neumann Green’s function with regular part R0, satisfying (A.4). Thus, for
ν 
 1, the Green’s matrix Gλ is

(3.6) Gλ =
D0N

ν(1 + τλ)|Ω|E + G0 +O(ν) , E =
1

N
eeT ,
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where e = (1, . . . , 1)T . Now since Ee = e and Eqj = 0 for j = 2, . . . , N , where qT
j e = 0, the

eigenvalues κλ,j of Gλ are κλ,1 ∼ D0N/ [ν(1 + τλ)|Ω|] and κλ,j = O(1) for j = 2, . . . , N . In
this way, we get

(3.7) 2πνκλ,1 ∼ μ

1 + τλ
; 2πνκλ,j = O(ν) for j = 2, . . . , N .

Upon substituting (3.7) into (3.1b) we recover the multipliers for the synchronous and asyn-
chronous modes given in (2.11) for the case where D = D0/ν and τ = O(1). In this parameter
regime, the N − 1 modes vj = qj for j = 2, . . . , N , correspond to asynchronous perturbations
in the spot amplitudes, which conserve the sum of the spot amplitudes via qT

j e = 0, while
v1 = e is the mode for which this perturbation is synchronous.

Our main focus here is to consider the new limit where τ � 1 so that |(1+ τλ)ν/D0| � 1
in (3.3). In this limit, Gλ(x;xi) decays rapidly away from xi so that, except within a thin
boundary layer near ∂Ω, we have

(3.8) Gλ(x;xi) ∼ 1

2π
K0 (θλ|x− xi|) , θλ ≡

√
(1 + τλ)ν

D0
.

Here we must specify the principal branch of the square root so that Gλ(x;xi) decays exponen-
tially away from xi. By using the well-known behavior K0(z) ∼ − log z+log 2−γ+O(z2 log z),
where γ ≈ 0.57721 . . . is Euler’s constant, we calculate that the regular part of (3.8) is inde-
pendent of xi, and as x → xi

(3.9)

Gλ(x;xi) ∼ − 1

2π
log |x− xi|+Rλ ; Rλ ≡ 1

2π

(
−1

2
log (ν(1 + τλ)) + log

(
2
√
D0

)
− γ

)
.

When |θλ| � 1, the off-diagonal entries of the Green’s matrix are exponentially small and
satisfy

(3.10) (Gλ)i,j = O
(
|xi − xj |−1/2e−θλ|xi−xj |

)

 1 for |xi − xj | = O(1) ,

since Re(θλ) > 0. Therefore, when |θλ| � 1, we have that Gλ is, asymptotically, a multiple of
the identity, given by Gλ ∼ RλI. As a result, the eigenvalues of Gλ in (3.2) are, asymptotically,
the common value κλ,j ∼ Rλ for j = 1, . . . , N . We remark that in this regime where |θλ| � 1,
the temporal oscillations of the spot amplitudes can no longer be classified as being either
synchronous or asynchronous. In fact, since Gλ is, asymptotically, a multiple of the identity,
the perturbations of the spot amplitudes, characterized by the vectors vj for j = 1, . . . , N ,
now span all of RN .

A key observation is that in order to make νκλ,j = O(1) in the multiplier (3.1b) of the
NLEP (3.1a) we need to allow for τ � 1 and introduce a rescaling of this parameter in terms
of ε. This is done by defining a new parameter τc > 0 via

(3.11) τ ≡ ε−τc

ν
, τc > 0 .
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When τc > 0, we have τ � 1, with the scaling being anomalous in ε. However, from the
self-consistency condition of (A.11) of Appendix A we require that ε2τλ/D 
 1. With (3.11)
and D = D0/ν, this requirement is satisfied provided that τc is not too large, i.e., that

(3.12)
ε2−τcλ

D0

 1 .

By combining (3.11) with (3.9), we calculate that

(3.13) 2πνκλ,j = −τc
2
+ νKε , Kε ≡ −1

2
log (λ+ νετc) + log

(
2
√
D0

)
− γ ,

so that the N multipliers in (3.1b) collapse to a common multiplier when |θλ| � 1, given by

(3.14) σj(λ) = σgm(λ) ≡ 2

1 + μ

(
1− τc

2
+ νKε

)
.

The discrete eigenvalues of the modified NLEP (3.1a) with multiplier (3.14) are the roots λ
of ggm(λ) = 0, where

(3.15) ggm(λ) ≡ (1 + μ)

2

(
1− τc

2
+ νKε

)−1−F(λ) , F(λ) ≡
∫∞
0 w

[
(L0 − λ)−1w2

]
ρ dρ∫∞

0 w2ρ dρ
.

We now determine an HB threshold value of τc for the modified NLEP (3.1a) with multi-
plier σgm in (3.14), by examining whether ggm(λ) = 0 in (3.15) can have any purely complex
conjugate roots. To motivate the analysis below we first neglect νKε in (3.15) and readily
conclude from Lemmas 2.1 and 2.2 that Re(λ) < 0 iff σgm > 1, which holds when τc < 1− μ.
When τc = 1 − μ, we have λ = 0. We observe that τc ≈ 1 − μ > 0 on the parameter range
0 < μ < 1, where the asynchronous mode in section 2.1 was found to be linearly stable and
where the synchronous mode had no HB threshold when τ = O(1).

With this motivation, we fix μ in 0 < μ < 1 and use (3.15) to determine an HB threshold
where τc is near the critical value 1− μ and where λ = iλI satisfies 0 < λI 
 1. To do so, we
first separate (3.15) into real and imaginary parts to get

τc − (1− μ) = (τc − 2) [1− Re(F(iλI))] + 2νRe [KεF(iλI)] ,(3.16a)

(τc − 2)λI = 4νIm [KεF(iλI)] ,(3.16b)

where Kε is defined in (3.13). In (3.16) we then use (2.7) to express the local behavior of
F(iλI) as

(3.17) F(iλI) ∼ 1 +
iλI
2

− κcλ
2
I + · · · for λI 
 1 ,

where κc is defined in (2.7c). By using (3.17), we will show for ν 
 1 that (3.16) has a root
with τc ∼ (1 − μ) − ν log ν + · · · and λI = O(ν). For 0 < μ < 1, so that τc > 0, and with
λI = O(ν), we estimate from (3.13) that

(3.18) Kε = K0 +O(νετc) , where K0 = − iπ
4

− 1

2
log λI + βk , βk ≡ log

(
2
√
D0

)
− γ .

Therefore, in (3.13) and in (3.16) we can replace Kε with K0 when τc > 0.
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By asymptotically calculating the root of (3.16) with (3.17) and (3.18) when ν 
 1, we
obtain the following main asymptotic result characterizing the HB threshold for a multispot
pattern for the GM model (1.1) in the regime where D = D0/ν and μ = 2πND0/|Ω| < 1.

Proposition 3.1. Consider an N -spot quasi-equilibrium pattern for the GM model (1.1) in
the regime where D = D0/ν with ν 
 1. Define μ ≡ 2πND0/|Ω| and suppose that 0 < μ < 1.
Then, the modified NLEP (3.1) has a Hopf bifurcation, corresponding to temporal oscillations
in the spot amplitudes, when τ = τH � 1 and λ = ±iλI , where λI 
 1. For ν 
 1, the
asymptotic expansion of this HB threshold and Hopf frequency is given by

(3.19) τH ∼ 1

ν
ε−τc , τc = (1−μ)−ν log ν+τc1ν+τc2ν2+· · · ; λ ∼ iν

(
λI0 + ν2λI2 + · · · ) ,

where the coefficients in this expansion are defined by
(3.20)

τc1 = 2βk−log λI0 , τc2 =
π2

4(1 + μ)
(1−4κc) , λI0 =

π

(1 + μ)
, λI2 =

π3

(1 + μ)3

(
1

4
− 2κc

)
.

Here βk and κc are defined in (3.18) and (2.7c), respectively.

Proof. We substitute (3.17) and (3.18) into (3.16), and use Re(z1z2) = Re(z1)Re(z2) −
Im(z1)Im(z2) together with Im(z1z2) = Re(z1)Im(z2) + Re(z2)Im(z1), to get

τc − (1− μ) ∼ (τc − 2)κcλ
2
I + 2νRe(K0)(1− κcλ

2
I)− Im(K0)νλI ,(3.21a)

(τc − 2)λI ∼ 4ν

[
λI
2
Re(K0) + Im(K0)(1 − κcλ

2
I)

]
,(3.21b)

where we calculate from (3.18) that Im(K0) = −π/4 and Re(K0) = βk − 1
2 log λI . Then, since

λI 
 1, from the first and second equations in (3.21) we get τc ∼ 1 − μ and (τc − 2)λI ∼
4νIm(K0), respectively. This second expression yields λI ∼ νπ/(1 + μ).

To systematically determine the higher order correction terms we write λI = νλ̃I , so that
(3.21) becomes

τc − (1− μ) = −ν log ν − ν log λ̃I + 2νβk + (τc − 2)κcν
2λ̃

2
I +

π

4
ν2λ̃I +O(ν3 log ν) ,(3.22a)

(τc − 2)λ̃I = −π + λ̃I

[
−ν log ν − ν log λ̃I + 2νβk

]
+ πκcλ̃

2
Iν

2 + · · · .(3.22b)

Now define τc0 ≡ 1 − μ and λI0 ≡ π/(1 + μ). From (3.22a) we get τc = τc0 − ν log ν +O(ν).
Next, we expand τc as in (3.19) and λ̃I as λ̃I = λI0 + νλI1 + ν2λI2 + · · · and substitute into
(3.22). By comparing the O(ν) terms in (3.22a) we get that τc1 = 2βk − log λI0. From the
O(ν) terms in (3.22b), we conclude that (τc0 − 2)λI1 = λI0(2βk − log λI0 − τc1). By using our
expression for τc1 we get that λI1 = 0. Then, by using log λ̃I = log λ̃I0 + O(ν2), we obtain
from the O(ν2) terms in (3.22) that τc2 and λI2 satisfy

(τc0 − 2)λI2 + τc2λI0 = πκcλ
2
I0 , τc2 = (τc0 − 2)κcλ

2
I0 +

π

4
λI0 .

This determines τc2 and λI2 as written in (3.20). This completes the derivation of (3.19).
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Figure 5. Left panel: HB threshold τH (solid curve) versus μ for a one-spot solution to the GM model
(1.1) centered at the origin of the unit disk with ν = 0.1, as computed from (3.23). The dot-dashed curve is
the HB threshold for the NLEP bilinear multiplier, obtained from (2.13). In the insert, τc ≡ ν log(τHν), as
computed from (3.23), is seen to compare well with the asymptotic result in (3.19) on μ < 1, except near μ = 1.
Right panel: λIH versus μ from (3.23) (solid curve), from the NLEP theory with bilinear multiplier from (2.13)
(dot-dashed curve for μ > 1), and from the asymptotic result in (3.19) (dot-dashed curve for μ < 1).

We now make a few remarks regarding this main result. We first observe that since
0 < μ < 1, our scaling threshold for τc and λI satisfies the required consistency condition
(3.12) for any 0 < μ < 1. Second, since λI 
 1, the temporal oscillations of the spot
amplitudes for the Hopf bifurcation are of low frequency. Next, we observe that in the regime
where τ � 1 the HB threshold for the spot amplitudes is, asymptotically, independent of the
spatial configuration of the spots and depends only on the number of spots. This qualitative
feature that the HB threshold is independent of the spot locations was also found to hold for
the conventional NLEP analysis in section 2.1 for the regime where D = D0/ν and τ = O(1).
Finally, our analysis of the anomalous HB threshold in the regime where 0 < μ < 1 is not
uniformly valid in the limit μ→ 1− where τc → 0+. When |μ−1| 
 1, we will show in section
4 that the spatial configuration of the spots is important for determining the HB threshold.

In Figure 5 we illustrate our main result for the HB threshold and eigenvalue for the special
case of a one-spot solution centered at the origin of the unit disk with ν = 0.1. From the
modified NLEP (3.1), and by calculating the reduced-wave Green’s function (3.3) analytically,
the HB threshold τH and λIH is the root of

(3.23a) Re(κλ,1) +
1

2πν

(
1− (1 + μ)FR

2
(F2

R + F2
I

)
)

= 0 , Im(κλ,1) +
1

4πν

(1 + μ)FI(F2
R +F2

I

) = 0 ,

where κλ1 ≡ Rλ,1 is given explicitly in terms of modified Bessel functions as
(3.23b)

Rλ,1 =
1

2π

[
−1

2
log (ν(1 + τλ)) + log

(
2
√
D0

)
− γ

]
− 1

2π

K ′
0(θλ)

I ′0(θλ)
, θλ ≡

√
ν (1 + iτλIH)

D0
,

where γ is Euler’s constant. We remark that the term in (3.23b) involving modified Bessel
functions represents the effect of the finite domain. In Figure 5 we compare the HB threshold
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and eigenvalue as computed from (3.23), from the NLEP theory with bilinear multiplier in
(2.13) on μ > 1, and from the new asymptotic scaling law in (3.19) valid on μ < 1. We
observe from this figure that this new scaling law accurately determines the HB threshold and
eigenvalue on 0 < μ < 1, except near μ = 1.

3.2. The Schnakenberg model. An analysis similar to that in section 3.2 can be done
for the Schnakenberg model (1.3). As shown in Appendix A, the modified NLEP problem,
valid for D = D0/ν and for arbitrary τ , is (3.1a), where the N choices for the multiplier of
the NLEP are

(3.24) σj(λ) =
2 (1 + 2πνκλ,j)

1 + α+ 2πνκλ,j
, j = 1, . . . , N ; α ≡ 4π2bD0N

2

|Ω|2A2
.

Here |Ω| is the area of Ω, and b ≡ ∫∞
0 ρw2 dρ ≈ 4.935, where w(ρ) is the ground-state satisfying

(1.4c).
In (3.24), the κλ,j for j = 1, . . . , N are the eigenvalues of the Green’s matrix in (3.4),

where the entries of this Green’s matrix are now defined in terms of the Green’s function
Gλ(x;xi) satisfying

ΔGλ − ντλ

D0
Gλ = −δ(x− xi) , x ∈ Ω ; ∂nGλ = 0 , x ∈ ∂Ω ,(3.25a)

Gλ(x;xi) = − 1

2π
log |x− xi|+Rλ,i + o(1) , as x → xi .(3.25b)

We recall from the conventional NLEP analysis in section 2.2 for the regime where D =
D0/ν and τ = O(1) that, for any fixed μ > 0 and α < 1, the asynchronous mode is linearly
stable while the synchronous mode is also linearly stable for any τ > 0. We showed that the
synchronous mode does undergo a Hopf bifurcation when α > 1, with the HB threshold value
of τ tending to infinity and the corresponding HB frequency tending to zero as α → 1+. By
analyzing the modified NLEP (3.1) with multiplier (3.24), we will show that there is an HB
threshold τH in the regime where α < 1 with τH → +∞ as ε→ 0.

We use the same approach as in section 3.1. We assume that |τλν/D0| � 1 so that
Gλ(x;xi) ∼ 1

2πK0 (ωλ|x− xi|), where ωλ is the principal branch of ωλ ≡ √
τλν/D0. When

|xi−xj| = O(1) for i �= j, we get Gλ ∼ RλI, where Rλ is given in (3.9) upon replacing (1+τλ)
with τλ. Then, upon introducing the scaling law τ = ν−1ε−τc , we obtain that

(3.26) 2πνκλ,j = −τc
2
+ νK0 , K0 ≡ −1

2
log λ+ βk , βk ≡ log

(
2
√
D0

)
− γ ,

where γ is Euler’s constant. Therefore, when τ � 1, the N multipliers in (3.24) collapse to a
common multiplier

(3.27) σj(λ) = σsc(λ) ≡ 2 (1− τc/2 + νK0)

(1 + α− τc/2 + νK0)
.

The discrete eigenvalues of the modified NLEP (3.1a) with multiplier (3.27) are the roots of
gsc(λ) = 0, where

(3.28) gsc(λ) ≡ (1 + α− τc/2 + νK0)

2 (1− τc/2 + νK0)
−F(λ) , F(λ) ≡

∫∞
0 w

[
(L0 − λ)−1w2

]
ρ dρ∫∞

0 w2ρ dρ
.
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We now examine whether (3.28) can have any purely complex conjugate roots. If we
neglect νK0 in (3.28), we conclude from Lemmas 2.1 and 2.2 that Re(λ) < 0 iff σc > 1, which
holds when τc < 2(1−α). When τc = 2(1−α), we have λ = 0 is a root of (3.28). Notice that
τc = 2(1−α) > 0 on the parameter range 0 < α < 1, where the asynchronous mode in section
2.2 was found to be linearly stable and where the synchronous mode had no HB threshold
when τ = O(1).

For a fixed α in 0 < α < 1 the asymptotic analysis to characterize the HB threshold and
frequency when τc is near the critical value 2(1 − α) parallels that in section 3.1. We let
λ = iλI and upon setting gsc(iλI) = 0 in (3.28), we obtain that

(3.29) 1 + α− τc
2
− (2− τc)F(iλI) = νK0 [2F(iλI)− 1] .

We then substitute the local behavior (3.17) for F(iλI) into (3.29) and take real and imaginary
parts of the resulting expression. This yields that

α− 1 +
τc
2
+ (2− τc)κcλ

2
I ∼ νRe(K0)

(
1− 2κcλ

2
I

)− νλIIm(K0) ,(3.30a) (τc
2
− 1
)
λI ∼ νIm(K0)

(
1− 2κcλ

2
I

)
+ νλIRe(K0) ,(3.30b)

where Im(K0) = −π/4 and Re(K0) = βk − 1
2 log λI . Since λI 
 1, the leading-order terms in

(3.30) are τc ∼ τc0 ≡ 2(1 − α) and (τc0/2− 1)λI ∼ −νπ/4, which yields λI ∼ πν/(4α). Since
λI = O(ν) and τc0 = 2(1 − α) satisfies 0 < τc < 2 on 0 < α < 1, the required consistency
condition in (3.12) is always satisfied.

By introducing an asymptotic expansion to systematically calculate the correction terms
to this leading-order HB threshold and frequency, as in the proof of Proposition 3.1, we obtain
the following main result.

Proposition 3.2. Consider an N -spot quasi-equilibrium pattern for the Schnakenberg model
(1.3) in the regime where D = D0/ν with ν 
 1. Suppose that the feed-rate parameter
A satisfies A > Ac ≡ 2πN

|Ω|
√
bD0, where b ≡ ∫∞

0 ρw2 dρ ≈ 4.935, and w(ρ) is the ground-

state satisfying (1.4c). Then, the modified NLEP (3.1a) with multiplier (3.24) has a Hopf
bifurcation, corresponding to temporal oscillations in the spot amplitudes, when τ = τH � 1
and λ = ±iλI , where

(3.31) τH ∼ 1

ν
ε−τc , τc = 2(1−α)−ν log ν+τc1ν+τc2ν2+· · · ; λ ∼ iν

(
λI0 + ν2λI2 + · · · ) .

Here the coefficients are given explicitly by

(3.32) τc1 = 2βk − log λI0 , τc2 =
π2

8α
(1− 2κc) , λI0 =

π

4α
, λI2 =

π3

16α3

(
1

4
− κc

)
.

Here α, βk, and κc are defined in (3.24), (3.26), and (2.7c), respectively.

In Figure 6 we plot the HB threshold and eigenvalue for a one-spot solution centered at
the origin of the unit disk with ν = 0.125 and μ = 2, for which D0 = 1. In place of (3.23a),
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Figure 6. Left panel: HB threshold τH (solid curve) versus α for a one-spot solution to the Schnakenberg
model (1.3) centered at the origin of the unit disk with ν = 0.125 and μ = 2, as computed from (3.33). The dot-
dashed curve is the HB threshold for the NLEP with a bilinear multiplier (2.18). In the insert, τc ≡ ν log(τHν)
from (3.23) agrees well with the asymptotic result in (3.31) on α < 1, except near α = 1. Right panel: λIH

versus α from (3.33) (solid curve), from the NLEP with a bilinear multiplier (2.18) (dot-dashed curve for
α > 1), and from the asymptotic result (3.31) (dot-dashed curve for α < 1).

the HB threshold τH and λIH for the modified NLEP (3.1a) with multiplier (3.24) is the root
of
(3.33)

Re(κλ,1) +
1

2πν

(
1 +

α (1− 2FR)

(1− 2FR)
2 + 4F2

I

)
= 0 , Im(κλ,1) +

1

πν

αFI[
(1− 2FR)

2 + 4F2
I

] = 0 ,

where κλ1 ≡ Rλ,1 is given in (3.23b), where θλ is now defined by θλ ≡ √
iντλIH/D0. In

Figure 6 we compare the HB threshold and eigenvalue, as computed from (3.33), with that
from the conventional NLEP theory (2.18), valid on α > 1, and with that from the new
asymptotic scaling law in (3.31), valid on α < 1.

3.3. The Gray–Scott model. A similar analysis can be done for the GS model (1.2). As
shown in Appendix B, the modified NLEP problem, valid for D = D0/ν and for arbitrary τ ,
is (3.1a), where the N choices for the multiplier of the NLEP are

(3.34) σj(λ) =
2 (1 + 2πνκλ,j)

1 + b/S2
0 + 2πνκλ,j

, j = 1, . . . , N .

Here |Ω| is the area of Ω, b ≡ ∫∞
0 ρw2 dρ ≈ 4.935, where w(ρ) is the ground-state satisfying

(1.4c), while S0 parameterizes the steady-state bifurcation diagram in terms of the feed-rate
parameter as in (2.20) (see Figure 3). In (3.34), the κλ,j for j = 1, . . . , N are the eigenvalues
of the Green’s matrix Gλ in (3.4), where the matrix entries are defined in terms of the reduced-
wave Green’s function of (3.3).

In our conventional NLEP analysis of section 2.3 for the regimeD = D0/ν and τ = O(1) we
showed that on the upper branch of the bifurcation diagram in Figure 3, where S0 > S0c ≡

√
b,
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the asynchronous mode is linearly stable and the synchronous mode is also linearly stable for
any τ > 0. We showed that the synchronous mode does undergo a Hopf bifurcation when
S0f < S0 < S0c (see Figure 3), with the HB threshold value of τ tending to infinity and the
corresponding HB frequency tending to zero as S0 → S−

0c.
We now use the modified NLEP (3.1) with multiplier (3.34) to show that there is an HB

threshold τH along the upper branch of Figure 3, where S0 > S0c ≡
√
b, for which τH → +∞

as ε→ 0.
We proceed as in sections 3.1 and 3.2. When τ � O(ν−1), so that |(1 + τλ)ν/D0| � 1,

Gλ(x;xi) is approximated by the free-space Green’s function in (3.8) and the Green’s matrix
Gλ satisfies Gλ ∼ RλI, where Rλ is given as in (3.9). We then introduce τc > 0 via the scaling
law (3.11) and obtain that

(3.35) 2πνκλ,j = −τc
2

+ νKε , Kε ≡ −1

2
log (λ+ νετc) + βk , βk ≡ log

(
2
√
D0

)
− γ ,

where γ is Euler’s constant. Upon substituting (3.35) into (3.34) we obtain that the N
multipliers collapse to a common multiplier given by

(3.36) σj(λ) = σgs(λ) ≡ 2 (1− τc/2 + νKε)

(1 + b/S2
0 − τc/2 + νKε)

.

The discrete eigenvalues of the modified NLEP (3.1a) with multiplier (3.36) are the roots of
ggs(λ) = 0, where

(3.37) ggs(λ) ≡
(
1 + b/S2

0 − τc/2 + νKε

)
2 (1− τc/2 + νKε)

−F(λ) , F(λ) ≡
∫∞
0 w

[
(L0 − λ)−1 w2

]
ρ dρ∫∞

0 w2ρ dρ
.

To determine whether (3.37) can have complex conjugate imaginary roots for some critical
value of τc, we simply observe that (3.37) is identical in form to that in (3.28) for the Schnaken-
berg model if we replace α and K0 in (3.28) with b/S2

0 and Kε. Therefore, the leading-order
HB threshold occurs for the GS model occurs when τ ∼ τc0 ≡ 2

(
1− b/S2

0

)
. Since τc0 > 0

when S0 > S0c ≡
√
b, we can use Kε = K0+O(νετc0) (see (3.18)) to approximate Kε in (3.37)

by K0 with an asymptotically negligible error. The asymptotic analysis to calculate a refined
HB threshold and frequency is then exactly the same as for the Schnakenberg model and is
summarized as follows.

Proposition 3.3. Consider an N -spot quasi-equilibrium pattern for the GS model (1.3) in
the regime where D = D0/ν with ν 
 1 and along the upper branch of the bifurcation diagram
in Figure 3, where S0 >

√
b. Then, the modified NLEP (3.1a) with multiplier (3.34) has a

Hopf bifurcation, corresponding to temporal oscillations in the spot amplitudes with the scaling
law
(3.38)

τH ∼ 1

ν
ε−τc , τc = 2

(
1− b

S2
0

)
− ν log ν + τc1ν + τc2ν

2 + · · · ; λ ∼ iν
(
λI0 + ν2λI2 + · · · ) .

Here b ≡ ∫∞
0 ρw2 dρ ≈ 4.935, where w(ρ) is the ground-state solution (1.4c), while the coeffi-
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Figure 7. Left panel: HB threshold τH (solid curve) versus S0 on the range S0 > S0f =
√

b/(1 + μ) (see
Figure 3) for a one-spot solution to the Gray–Scott model (1.2) centered at the origin of the unit disk with
ν = 0.125 and μ = 2, as computed from (3.33) in which α = b/S2

0 . The dot-dashed curve is the HB threshold
for the conventional NLEP (2.24). In the insert, τc ≡ ν log(τHν) from (3.33) is in close agreement with the
asymptotic result in (3.38) on S0 > S0c ≡ √

b. Right panel: λIH versus S0 from (3.33) (solid curve), from the
NLEP with a bilinear multiplier (2.24) (dot-dashed curve for S0f < S0 < S0c), and from the asymptotic result
(3.38) (dot-dashed curve for S0 > S0c).

cients in (3.38) are given explicitly by
(3.39)

τc1 = 2βk − log λI0 , τc2 =
π2S2

0

8b
(1− 2κc) , λI0 =

πS2
0

4b
, λI2 =

π3

16

(
S2
0

b

)3(
1

4
− κc

)
.

Here βk and κc are defined in (3.35) and (2.7c), respectively.

The HB threshold and eigenvalue for a one-spot solution centered at the origin for the GS
model (1.2) is plotted in Figure 7 when ν = 0.125 and μ = 2, for which D0 = 1. For the GS
model, this threshold is the root of (3.33), where θλ ≡ √

ν (1 + iτλIH) /D0, and α = b/S2
0 ,

where S0 > S0f ≡ √
b/(1 + μ) parametrizes the upper branch of the bifurcation diagram of

Figure 3. In Figure 6 we compare these HB threshold values with that from the conventional
NLEP theory (2.24), valid on S0f < S0 < S0c ≡ √

b, and with that from the asymptotic
scaling law in (3.38), valid for S0 > S0c.

4. Refined HB thresholds for multispot patterns. The leading-order conventional NLEP
analysis of section 2 for the parameter regime D = D0/ν and τ = O(1) showed that the HB
threshold depends only on the number of spots and is independent of their spatial arrange-
ment in the domain. This qualitative property of the HB threshold also occurs in the limit
τ � 1 for the modified NLEP analysis of section 3, which leads to the new scaling laws in
Propositions 3.1–3.3. In this section, we numerically study the modified NLEPs of section 3
for the parameter range where the decay rate θλ in the reduced-wave Green’s function (3.3)
is O(1). It is in this transition regime where the HB threshold depends on the spot locations,
and where there can be N distinct HB values corresponding to the distinct eigenvalues of the
Green’s matrix (3.4).
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We will illustrate our theory for a quasi-equilibrium pattern where N spots are equally
spaced on a ring of radius r0, with 0 < r0 < 1, which is concentric within the unit disk, for
which the spot centers are

(4.1) xj = r0

(
cos

(
2πj

N

)
, sin

(
2πj

N

))T

, j = 1, . . . , N .

For r0 we will take the steady-state ring radius determined in [11] from the leading-order-in-ν
analysis for the D = D0/ν � 1 regime. In the unit disk, Gλ(x; ξ) in (3.3) and its regular part
are (see Appendix A.1 of [3])

(4.2a) Gλ(x; ξ) =
1

2π
K0 (θλ|x− ξ|)− 1

2π

∞∑
n=0

σn cos (n(ψ − ψ0))
K ′

n(θλ)

I ′n(θλ)
In (θλr) In (θλr0) ,

where σ0 ≡ 1, σn ≡ 2 for n ≥ 1, while x ≡ r(cosψ, sinψ)T , and ξ ≡ r0(cosψ0, sinψ0)
T . The

regular part is

(4.2b) Rλ =
1

2π

[
log
(
2
√
D0

)
− γ − 1

2
log (ν(1 + τλ))

]
− 1

2π

∞∑
n=0

σn
K ′

n(θλ)

I ′n(θλ)
[In (θλr0)]

2 ,

For a ring pattern, the symmetric Green’s matrix Gλ in (3.4) also has a cyclic structure.
This Green’s matrix is obtained by a cyclic permutation of its first row aλ ≡ (aλ,1, . . . , aλ,N )T ,
which is defined termwise by

(4.3) aλ,1 ≡ Rλ ; aλ,j = Gλ,j1 ≡ Gλ(xj ;x1) , j = 2, . . . , N .

The matrix spectrum Gλvj = κλ,jvj is readily calculated as in section 6 of [8]. The synchronous
eigenpair of Gλ is

(4.4a) κλ,1 =

N∑
n=1

aλ,n , v1 = (1, . . . , 1)T ,

while the other eigenvalues, corresponding to the asynchronous modes for which vT
j v1 = 0 for

j = 2, . . . , N , are

(4.4b) κλ,j =
N−1∑
n=0

cos

(
2π(j − 1)n

N

)
aλ,n+1 , j = 2, . . . , N .

Since κλ,j = κλ,N+2−j for j = 2, . . . , �N/2�, there are �N/2�−1 pairs of degenerate eigenvalues
for Gλ. Here the ceiling function �x� is defined as the smallest integer not less than x. When
N is even, there is an eigenvalue of multiplicity one given by κλ,N

2
+1 =

∑N−1
n=0 (−1)nan+1. The

other eigenvectors for j = 2, . . . , �N/2� are

(4.4c)

vj =

(
1, cos

(
2π(j − 1)

N

)
, . . . , cos

(
2π(j − 1)(N − 1)

N

))T

,

vN+2−j =

(
0, sin

(
2π(j − 1)

N

)
, . . . , sin

(
2π(j − 1)(N − 1)

N

))T

.
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Figure 8. HB threshold τH (left panel) and eigenvalue λIH (right panel) versus μ for a two-spot ring pattern
in the unit disk for the GM model (1.1) when r0 = 0.452 and ν = 0.1. The solid curves in the left and right
panel are for the synchronous mode j = 1 mode, while the dotted curves are for the asynchronous j = 2 mode,
both computed from (4.5). The dot-dashed curves for μ > 1 are from the conventional NLEP theory (2.13),
while the dot-dashed curves for μ < 1 are from the asymptotic scaling law (3.19). In the insert in the left panel
we plot τc ≡ ν log(τHν). The HB thresholds for the synchronous and asynchronous modes are clearly distinct
on 0.8 < μ < 1, with the synchronous mode yielding the smaller of the two values for τH . The HB eigenvalue
for the asynchronous mode vanishes just beyond μ = 1.

Finally, when N is even, there is an additional eigenvector given by vN
2
+1 = (1,−1, . . . ,−1)T .

By using the explicit formulae for Gλ and its regular part from (4.2), the eigenvalues κλ,j of
the Green’s matrix Gλ are then easily computed from (4.4a) and (4.4b).

To determine the HB thresholds for the GM model (1.1) from the modified NLEP (3.1),
we must numerically determine the roots of
(4.5)

Re(κλ,j) = − 1

2πν

(
1− (1 + μ)FR

2
(F2

R + F2
I

)
)
, Im(κλ,j) = − 1

4πν

(1 + μ)FI(F2
R + F2

I

) , j = 1, . . . , N ,

where FR(λI) and FI(λI) are defined in (2.6). For a two-spot ring pattern with r0 = 0.452
and ν = 0.1, in Figure 8 we plot the HB threshold values τH and λIH versus μ for j = 1
(synchronous, solid curves) and for j = 2 (asynchronous, dotted curves), as computed from
(4.5). Results from the conventional NLEP theory for μ > 1 (2.13) and from the asymptotic
scaling law for μ < 1 (3.19) are indicated by the dot-dashed curves. We observe that on the
range μ < 1, the HB thresholds for τH and λIH for the synchronous and asynchronous modes
essentially coincide only up to around μ = 0.8. On the range 0.8 < μ < 1, the HB thresholds
for the two modes are distinct, with the synchronous mode yielding the smaller τH . From the
right panel of Figure 8, the HB eigenvalue for the asynchronous mode is positive for μ < 1,
but vanishes at some critical value of μ that is slightly above μ = 1. This is consistent with
conventional NLEP theory, in that it was shown in section 2.1 for the regime τ = O(1) and
D = D0/ν that the asynchronous mode does not undergo a Hopf bifurcation when μ > 1, but
is unstable due to a positive real eigenvalue. This mechanism whereby the purely imaginary
pair of complex conjugate eigenvalues associated with the asynchronous mode collides at the
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Figure 9. HB thresholds for the GM model (1.1) for a five-spot ring pattern with r0 = 0.6252 and ν = 0.1.
For N = 5, there is an HB for the synchronous mode j = 1 (solid curves) and for two distinct asynchronous
modes j = 2, 3 (dotted curves), as obtained numerically from (4.5). The dot-dashed curves for μ > 1 are from
the conventional NLEP theory (2.13), while the dot-dashed curves for μ < 1 are from the asymptotic scaling
law (3.19), where we plot τc ≡ ν log(τHν). The HB threshold value of τ is smallest for the synchronous mode.
For each of the two asynchronous modes, the HB thresholds exist on μ > 0 only up to some critical value near
μ = 1, where the Hopf eigenvalue vanishes.

origin λ = 0 of the spectral plane at some critical value μc of μ and produces a positive real
eigenvalue when μ > μc is similar to that found in the study of the stabiliy of GM spike
patterns in one dimension (see Figure 18 of [25]).

A very similar scenario occurs for larger N . In particular, in Figure 9 we plot the HB
threshold values, as computed from (4.5), for a five-spot pattern with ν = 0.1 and ring radius
r0 = 0.6252. For N = 5, we have κλ,i = κλ,7−i for i = 2, 3, and so there are exactly two distinct
asynchronous modes. From the insert in the left panel of Figure 9, and from the right panel of
Figure 9, we conclude that the HB values of τH and λIH for the synchronous and asynchronous
modes essentially coincide on μ < 0.65, where they are well-approximated by the scaling law
(3.19). In addition, the conventional NLEP theory (2.13) provides a decent approximation to
the HB threshold for the synchronous mode when μ > 1. Finally, the HB eigenvalue for each
of the two asynchronous modes vanishes at some critical value of μ near μ = 1.

A qualitatively similar behavior of the HB threshold occurs for a ring-pattern of spots for
the GS model (1.2) and the Schnakenberg model (1.3). For illustration, we will only consider
the latter model here. For the Schnakenberg model, any HB value for the modified NLEP
(3.1a) with multiplier (3.24) is a root of

Re(κλ,j) = − 1

2πν

(
1 +

α (1− 2FR)

(1− 2FR)
2 + 4F2

I

)
, Im(κλ,j)(4.6)

= − 1

πν

αFI[
(1− 2FR)

2 + 4F2
I

] , j = 1, . . . , N .

For the unit disk, μ = 2πND0/|Ω| = 2ND0 and α is related to the feed-rate parameter A in
(1.3) (see (3.24)) by α = 4bD0N

2A−2, where b ≡ ∫∞
0 ρw2 dρ ≈ 4.935.
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Figure 10. HB threshold τH (left panel) and eigenvalue λIH (right panel) versus α for a two-spot ring
pattern in the unit disk for the Schnakenberg model (1.3) when r0 = 0.452, ν = 0.125, and μ = 4, so that
D0 = 1. The solid and dotted curves, computed from (4.6), are for the synchronous (j = 1) and asynchronous
(j = 2) modes, respectively. The dot-dashed curves for α > 1 and for α < 1 are from the conventional NLEP
theory (2.18) and the new scaling law (3.31), respectively. From the left panel, the HB eigenvalue for the
asynchronous mode vanishes just beyond α = 1.

In Figure 10 we plot the HB threshold values versus α, as computed from (4.6), for a
two-spot pattern with ν = 0.125, ring radius r0 = 0.452, and with μ = 4, so that D0 =
1. We observe that the HB values of τH and λIH for the synchronous and asynchronous
modes essentially coincide on α < 0.85, where they are well-approximated by the new scaling
law (3.31). Moreover, the conventional NLEP theory, given by the parameterization (2.18),
approximates well the HB threshold for the synchronous mode when α > 1. We observe that
the HB eigenvalue for the asynchronous mode vanishes at some critical value of α slightly
above α = 1.

Finally, in Figure 11 we plot the HB threshold values versus α for a five-spot ring pattern
with ν = 0.125, ring radius r0 = 0.6252, and with μ = 10, so that we maintain D0 = 1. The
results are qualitatively identical to that discussed in the caption of Figure 9 for a five-spot
pattern for the GM model.

5. HB thresholds for moderately small ν: Numerical validation. In this section we show
how to accurately determine the HB threshold for a ring pattern of spots for the Schnakenberg
model (1.3) when ν = −1/ log ε is only moderately small. In contrast to NLEP theory, which
is a leading-order-in-ν theory, the resulting problem formulated below for the HB threshold
effectively incorporates all terms in powers of ν. The formulation of this problem relies on
some results in Appendix A.

For a quasi-equilibrium ring pattern of N spots, and with D = D0/ν, the common spot
source strength is Sj = Sc = A√

ν/(2πN
√
D0) for j = 1, . . . , N . From (A.1), the common

core problem near each spot is

ΔρVc − Vc + UcV2
c = 0 , V ′

c(0) = 0 , Vc → 0 as ρ→ ∞ ,(5.1a)

ΔρUc = UcV2
c , U ′

c(0) = 0 , Uc ∼ Sc log ρ+D(Sc) , as ρ→ ∞ .(5.1b)
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Figure 11. HB threshold τH (left panel) and eigenvalue λIH (right panel) versus α for a five-spot ring
pattern in the unit disk for the Schnakenberg model (1.3) when r0 = 0.6252, ν = 0.125, and μ = 10, so that
D0 = 1. The solid and dotted curves, computed from (4.6), are for the synchronous (j = 1) and asynchronous
(j = 2, 3) modes, respectively. The dot-dashed curves for α > 1 and for α < 1 are from the conventional NLEP
theory (2.18) and the new scaling law (3.31), respectively. From the left panel, the HB eigenvalue for each of
the two asynchronous modes vanishes near α = 1.

Upon linearizing around this particular quasi-equilibrium solution, we use (A.16) and (A.10)
to obtain the following spectral problem

(5.2) (I(1 + νBc) + 2πνGλ)C = 0 ,

where C ≡ (C1, . . . , CN )T and Bc = Bc(λ, Sc) is obtained from the BVP system

ΔρΦc − Φc + 2UcVcΦc + V2
cNc = λΦc , Φ′

c(0) = 0 , Φc → 0 as ρ→ ∞ ,(5.3a)

ΔρNc − V2
cNc = 2UcVcΦc , N ′

c(0) = 0 , Nc ∼ log ρ+Bc . as ρ→ ∞ ,(5.3b)

In (5.2), Gλ is the eigenvalue-dependent Green’s matrix defined in (3.4) in terms of the Green’s
function of (3.25). For this N -spot ring pattern, the matrix spectrum of Gλ is as given in (4.3)–
(4.4c).

In this way, we obtain from (5.2) that the discrete eigenvalues λ characterizing the linear
stability of a ring pattern of spots are the union of the roots of

(5.4) κλ,j = − 1

2πν
(1 + νBc) , j = 1 , . . . , N ,

where κλ,j is given explicitly in terms of the first row of the Green’s matrix by (4.4b). In (5.4),

Bc = Bc(λ, Sc) is to be computed numerically from (5.3) in terms of the numerical solution to
the core problem (5.1). To determine the HB threshold for the j = 1 synchronous mode, and
for the remaining asynchronous modes with j > 1, we set λ = iλI in (5.4) and use Newton’s
method on the complex-valued equation (5.4) to compute the HB values τH and λIH for each
j = 1, . . . , N .

To illustrate the theory, we let N = 4 and take r0 = 0.5986, which is the steady-state
ring radius when N = 4 (cf. [11]). For ε = 0.01 and D = D0/ν with D0 = 1, in Figure 12
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Figure 12. HB threshold τH (left panel) and eigenvalue λIH (right panel) versus α for a four-spot ring
pattern in the unit disk for the Schnakenberg model (1.3) when r0 = 0.5986, ε = 0.01, and D = D0/ν, where
D0 = 1 and ν = −1/ log ε. The solid curves were computed from the full asymptotic theory (5.4), which is
accurate to all orders in ν. The j = 1 mode is the synchronous mode, while the j = 2 and j = 3 modes
correspond to asynchronous oscillations. The j = 4 curve is identical to that for j = 2. Left panel: as τ
increases, the synchronous mode is the first to go unstable. The j = 3 curve ends at α ≈ 0.905. For α > 0.905,
there is a real positive eigenvalue for any value of τ , corresponding to a competition instability. The open
circles correspond to thresholds obtained from determining the HB threshold from full numerical solutions of
the Schnakenberg PDE (1.3). Right panel: the HB eigenvalue λIH . As α approaches the competition threshold,
the eigenvalue for the j = 3 mode approaches the origin along the imaginary axis.

we plot the HB values, computed from (5.4), as a function of α where α ≡ 4bD0N
2A−2 with

b ≈ 4.935. From Figure 12(a) we observe that the HB value of τ for the synchronous mode
j = 1 is the smallest, and so it is this mode which sets the HB threshold. The two distinct
asynchronous modes have larger HB values for τ and, as expected, the thresholds for each of
these modes exist only when α is less than some critical value near α = 1. From Figure 12(b),
we observe that the corresponding Hopf frequency vanishes at these critical values of α.

Finally, we compare our asymptotic theory with results from full PDE numerical simu-
lations of the Schnakenberg model (1.3) computed using the adaptive finite element solver
FlexPDE6 [7] for the specific four-spot pattern of Figure 12 with A = 22.8. For this value of
A, we have α ≈ 0.6184, and Figure 12(a) for the j = 1 mode yields the asymptotic predic-
tion τH ≈ 153. For the parameter value τ = 158, which slightly exceeds the HB prediction
τH ≈ 153, in Figure 13 we show that a random initial perturbation of the spot amplitudes
will eventually lead to synchronized spot amplitude oscillations as time increases. Since the
range of these oscillations is small, the full numerical results in Figure 14 over a much longer
time interval than in Figure 13(b) suggest that the Hopf bifurcation for this parameter set is
supercritical.

6. Discussion. We have provided a detailed analysis of the parameter values for the onset
of temporal oscillations of the spot amplitudes for multispot patterns associated with three
singularly perturbed two-component RD systems in a bounded 2-D domain. In these systems,
the two bifurcation parameters are the reaction-time parameter τ and the inhibitor diffusivity
D. In the limit of large diffusivity D = D0/ν � 1 with D0 = O(1), the linear stability
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Figure 13. Full numerical computations in the unit disk for the Schnakenberg model (1.3) using FlexPDE6
[7] showing synchronous oscillations in the spot amplitudes for a four-spot ring pattern with ring radius r0 =
0.5986 and with parameters ε = 0.01, A = 22.8, τ = 158, and D = D0/ν, where D0 = 1 and ν = −1/ log ε.
This corresponds to α = 0.6184 in Figure 12. Left panel: when r0 = 0.5986, the four-spot ring pattern is at a
steady-state configuration. Right panel: growing temporal oscillations of the amplitudes of the four spots when
τ = 158 is set slightly above the HB threshold τH ≈ 153, as predicted by the asymptotic theory (5.4). The HB
thresholds for the asynchronous modes are τH2 ≈ 312 and τH3 ≈ 367. The steady-state was perturbed by a small
random perturbation. However, the oscillations quickly synchronize as predicted by the asymptotic theory, with
the amplitudes of the four spots exhibiting in-phase oscillations of increasing amplitude. (The labels of the spots
are as in the caption of Figure 14.) The angular frequency of the oscillations is approximately 0.31, close to
the predicted value of λIH = 0.334 from (5.4).
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Figure 14. Plot of the spot amplitudes for the four-spot ring pattern of Figure 13 over a larger time interval,
as computed from full PDE simulations of (1.3). The occurrence of small amplitude temporal oscillations
suggests that the Hopf bifurcation for this parameter set is supercritical. The labels of the four spots are spot 1,
positive x-axis; spot 2, positive y-axis; spot 3, negative x-axis; spot 4, negative y-axis.

properties of multispot patterns on O(1) time-scales is determined by the spectra of an NLEP.
For the conventional regime where τ = O(1), considered originally in [27], [28], [29], [30], [31],
our new parameterization of the NLEP has shown that synchronous temporal oscillations in
the spot amplitudes due to a Hopf bifurcation can only occur on the range D0 > D0c, where
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D0c > 0 is the competition stability threshold. For D0 < D0c no spot amplitude oscillations
occur for any τ = O(1). To analyze whether a Hopf bifurcation can occur when τ � 1 and
D0 < D0c we derive a new modified NLEP appropriate to this regime by considering a new
distinguished limit of the reduced-wave Green’s function. From an analysis of this modified
NLEP we have shown for the range D0 < D0c that a Hopf bifurcation will occur at some
threshold τ = τH � 1, where τH ∼ ν−1ε−τc � 1 for some τc satisfying 0 < τc < 2. The
exponent τc in this anomalous scaling law was calculated for each of the three RD systems.
This exponent is independent of the configuration of spots in the domain. Our detailed
analysis of the Hopf bifurcation threshold resolves a long-standing open problem in NLEP
theory (cf. [33]).

The anomalous scaling law for the Hopf bifurcation threshold τH when D < D0c/ν is
not uniformly valid as D tends to the competition threshold D0c/ν from below. When D is
near this competition threshold, in section 4 it was shown that the Hopf bifurcation threshold
depends on the spatial configuration of spots in the domain. In section 4 this Hopf threshold
was computed numerically from the modified NLEP only for a ring pattern of spots inside the
unit disk, where both the Green’s matrix and its spectra are readily available. It would be
worthwhile to extend this methodology to compute the Hopf threshold for an arbitrary spatial
configuration of spots in a general 2-D domain when D is near the competition threshold. For
an arbitrary 2-D domain this extension would require computing the Green’s function using
fast multipole numerical methods of [13] and determining the matrix spectra of the Green’s
matrix numerically.

Finally, now that the conditions for the onset of Hopf bifurcations of multispot patterns
in two dimensions are better understood for the regime D = D0/ν, it would be worthwhile
to develop a weakly nonlinear theory to characterize whether spot amplitude oscillations are
subcritical or supercritical. For the parameter values of Figure 14 used for the Schnakenberg
model, the Hopf bifurcation is most likely supercritical. Although such a weakly nonlinear
theory has been recently developed in [22] for 1-D spike patterns, the extension of this theory
to treat 2-D spot patterns will be challenging.

Appendix A. The Schnakenberg model. We first use the method of matched asymptotic
expansions, as in [11], to construct an N -spot quasi-equilibrium solution to the Schnakenberg
model (1.3), where the spots are centered at xj ∈ Ω for j = 1, . . . , N .

In the inner region near x = xj we introduce the inner variable y = ε−1(x − xj) with
ρ = |y| and look for a locally radially symmetric solution in the form v =

√
D Vj(ρ)+ · · · and

u = (A√
D)−1Uj(ρ) + · · · . By substituting this expansion into the steady-state equations of

(1.3), we get that Vj and Uj are solutions to the following core problem, defined on ρ > 0,
which is parameterized by the unknown source strength Sj > 0:

ΔρVj − Vj + UjV2
j = 0 , V ′

j(0) = 0 , Vj → 0 , as ρ→ ∞ ,(A.1a)

ΔρUj = UjV2
j , U ′

j(0) = 0 , Uj ∼ Sj log ρ+D(Sj) , as ρ→ ∞ .(A.1b)

Here Δρ ≡ ∂ρρ + ρ−1∂ρ. The function D(Sj) was computed numerically in section 2.1 of [11].
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The source strengths Sj for j = 1, . . . , N are determined by matching the solution to the
core problem (A.1) near each xj to an outer solution for u. This outer problem is

Δu = −1 +
2π

√
D

A
N∑
i=1

Si δ(x − xi) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω ,(A.2a)

u ∼ 1

A√
D

[
Sj log |x− xj |+D(Sj) +

Sj
ν

]
, as x → xj , j = 1, . . . , N ,(A.2b)

where ν ≡ −1/ log ε. The solution to (A.2) is

(A.3) u(x) = − 2π

A√
D

(
N∑
i=1

SiG0(x;xi) + ū

)
, provided that

N∑
i=1

Si =
A|Ω|
2π

√
D
.

Here ū is a constant to be found and G0(x;xi) is the Neumann Green’s function, which satisfies

ΔG0 =
1

|Ω| − δ(x − xi) , x ∈ Ω ; ∂nG0 = 0 , x ∈ ∂Ω ,(A.4a)

G0(x;xi) = − 1

2π
log |x− xi|+R0(xi) + o(1) , as x → xi ;

∫
Ω
G0 dx = 0 .(A.4b)

By matching the local behavior of u as x → xj with the far-field of Uj as ρ → ∞, we
derive that Sj for j = 1, . . . , N and ū satisfy the N+1 dimensional nonlinear algebraic system
(A.5)

Sj + 2πν

⎛
⎝SjR0,j +

N∑
i �=j

SiG0,ji

⎞
⎠+ νD(Sj) = −2πνū , j = 1 , . . . , N ;

N∑
i=1

Si =
A|Ω|
2π

√
D
,

where G0,ji ≡ G0(xj ;xi) and R0,j ≡ R0(xj).
When D = D0/ν � 1, the last expression in (A.5) yields that Sj = O(

√
ν) 
 1. For

Sj 
 1 it was shown in Appendix A of [9] that

(A.6) Uj ∼ b

Sj
+ · · · , Vj ∼ Sjw

b
+ · · · , D(Sj) ∼ b

Sj

for Sj 
 1, where b ≡ ∫∞
0 ρw2 dρ ≈ 4.935, and w(ρ) is the ground-state solution of (1.4c). We

then use the dominant balance Sj =
√
νS̃j to reduce (A.5) to leading-order in ν to

(A.7) S̃j +
b

S̃j
= −2π

√
νū ,

N∑
i=1

S̃i =
A|Ω|

2π
√
D0

.

We consider only symmetric quasi-equilibrium N -spot solutions (cf. [31]), where there is a
common leading-order source strength. From (A.7) the common source strength is S̃j = S0 ≡
A|Ω|/(2πN√

D0).
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Next, we examine whether the N -spot quasi-equilibrium solution, denoted by ve and ue,
can become unstable on an O(1) time-scale due to instabilities in the spot amplitudes. To do

so, we introduce the perturbation u = ue + eλtη and v = ve + eλtφ to obtain, from (1.3), the
following eigenvalue problem with ∂nφ = ∂nη = 0 on ∂Ω:

(A.8) ε2Δφ−φ+2Aueveφ+Av2eη = λφ , DΔη−τλη = ε−2
(
2ueveφ+ v2eη

)
, x ∈ Ω .

In the inner region near the jth spot we look for a leading-order locally radially symmetric
solution as

(A.9) φ =
√
DΦj(ρ) + · · · , η =

1

A√
D
Nj(ρ) + · · · ,

where y = ε−1(x − xj) and ρ = |y|. Upon substituting (A.9) into (A.8), and using ueve ∼
A−1UjVj and v2e ∼ DV2

j , we obtain, on ρ > 0, that Φj and Nj satisfy

ΔρΦj − Φj + 2UjVjΦj + V2
jNj = λΦj , Φ′

j(0) = 0 , Φj → 0 as ρ→ ∞ ,(A.10a)

ΔρNj − V2
jNj = 2UjVjΦj , N ′

j(0) = 0 , Nj ∼ Cj log ρ+Bj , as ρ→ ∞ ,(A.10b)

provided that τ is sufficiently small so that

(A.11)
ε2τλ

D

 1 .

In (A.10), Bj = Bj(λ, Sj) must, in general, be computed numerically. Since (A.10) is a
homogeneous linear system, we can, in principle, write Bj = CjB̃j(λ, Sj). We will show below
that the unknown coefficients Cj for j = 1, . . . , N are obtained from the eigenvectors of a
matrix eigenvalue problem. Since Φj is proportional to Cj, we can interpret the coefficients
as perturbations to the amplitudes of the spots, owing to the fact that the globally defined
activator concentration v for a perturbed N -spot quasi-equilibrium solution has the form

(A.12) v ∼
N∑
j=1

√
D
(
Vj

[
ε−1|x− xj|

]
+ eλtΦj

[
ε−1|x− xj |

])
.

To derive a matrix eigenvalue problem for C1, . . . , CN , we must match the inner solution
Nj to an outer solution for η. The outer problem for η is simply

Δη − τλ

D
η =

2π

A√
D

N∑
i=1

Ci δ(x − xi) , x ∈ Ω ; ∂nη = 0 , x ∈ ∂Ω ,(A.13a)

η ∼ Cj

A√
D

[
log |x− xj |+Bj +

1

ν

]
, as x → xj , j = 1, . . . , N .(A.13b)

The solution to (A.13) is

(A.14) η = − 2π

A√
D

N∑
i=1

CiGλ(x;xi) ,
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where Gλ(x;xi) is the Green’s function satisfying (3.25). By asymptotically matching the
local behavior of η as x → xj to the far-field behavior of the inner solution η = (A√

D)−1Nj,
we readily derive the matrix problem

(A.15) Cj + 2πν

⎛
⎝Rλ,jCj +

N∑
i �=j

CiGλ,ji

⎞
⎠+ νBj = 0 , j = 1 , . . . , N .

Here Gλ,ji ≡ Gλ(xj ;xi), while Rλ,j ≡ Rλ(xj) is the regular part of Gλ at x = xj (see (3.25)).
In matrix form, (A.15) is

(A.16) (I + 2πνGλ)C+ νB = 0 ,

where C ≡ (C1, . . . , CN )T , B ≡ (B1, . . . , BN )T , and Gλ is the N × N symmetric Green’s
matrix given in (3.4) in terms of the Green’s function of (3.25).

For the parameter range where D = D0/ν � 1 with ν 
 1, we now derive an NLEP from
(A.10) and (A.16) for the case where there is a common spot source strength Sj =

√
νS0 with

S0 ≡ A|Ω|/(2πN√
D0). In this parameter range, we use (A.6) to obtain Uj ∼ b/[

√
νS0] and

Vj ∼
√
νS0w/b, so that (A.10) reduces, when written in matrix form, to

L0Φ+
νS2

0w
2

b2
N = λΦ , Φ′(0) = 0 , Φ → 0 as ρ→ ∞ ,(A.17a)

ΔρN− νS2
0w

2

b2
N = 2wΦ , N′(0) = 0 , N ∼ C log ρ+B , as ρ→ ∞ ,(A.17b)

where Φ ≡ (Φ1, . . . ,ΦN ), N ≡ (N1, . . . , NN ), and where L0 is the local operator defined in
(1.4b). We then introducing the rescaling

Φ = Φ0 +O(ν) , N = ν−1N0 +O(1) , B = ν−1B0 +O(1) ,

so that (A.17) becomes

L0Φ0 +
S2
0w

2

b2
N0 = λΦ0 , Φ′

0(0) = 0 , Φ0 → 0 as ρ→ ∞ ,(A.18a)

ΔρN0 = ν

(
2wΦ0 +

S2
0w

2

b2
N0

)
, N′

0(0) = 0 , N0 ∼ νC log ρ+B0 , as ρ→ ∞ .

(A.18b)

For ν 
 1, we readily derive from (A.18) and (A.16) that N0 = B0, and
(A.19)

C =

∫ ∞

0

(
2wΦ0 +

S2
0w

2

b2
N0

)
ρ dρ = 2

∫ ∞

0
ρwΦ0 dρ+

S2
0

b
N0 , (I + 2πνGλ)C = −N0 .

We now eliminate C between the last two equations in (A.19) to determine N0. Upon sub-
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stituting the resulting expression for N0 into (A.18a) we obtain a vector NLEP of the form

(A.20) L0Φ0 − w2H
∫∞
0 ρwΦ0 dρ∫∞
0 ρw2 dρ

= λΦ0 , H ≡ 2

(
I +

b

S2
0

(I + 2πνGλ)
−1

)−1

,

where α ≡ b/S2
0 = 4π2bD0N

2/[|Ω|2A2].
Finally, to diagonalize this vector NLEP we let Ci and κλ,i denote the matrix spectrum

of Gλ, i.e.,

(A.21) GλCi = κλ,iCi , i = 1, . . . , N .

From the expression for H in (A.20) we get

(A.22) HCi = σiCi , i = 1, . . . , N ; σi ≡ 2(1 + 2πνκλ,i)

1 + α+ 2πνκλ,i
.

Upon decomposing H = QΛQT , where Λ is the diagonal matrix of eigenvalues σi of H and
Q is the orthogonal matrix of eigenvectors Ci, and then introducing Ψ = QTΦ0, we readily
obtain the N -scalar NLEPs of the form (3.1), with multipliers as given in (3.24).

To recover the NLEP for the Schnakenberg model with the bilinear multiplier given by
(1.4a) and (2.15), which is valid for D = D0/ν and τ = O(1), we first derive from (3.25) that,
for ν 
 1,

Gλ =
D0N

ντλ|Ω|E + G0 +O(ν) , E ≡ 1

N
eeT ,

where e = (1, . . . , 1)T and G0 is the Neumann Green’s matrix. Since Ee = e and Eqi = 0
for i = 2, . . . , N , where qT

i e = 0, the eigenvalues κλ,i of Gλ are κλ,1 ∼ D0N/ [ντλ|Ω|] and
κλ,i = O(1) for i = 2, . . . , N . This yields that

(A.23) 2πνκλ,1 ∼ μ

τλ
; 2πνκλ,i = O(ν) for i = 2, . . . , N ,

where μ ≡ 2πND0/|Ω|. Upon substituting (A.23) into (A.22) we recover the bilinear-in-λ
multipliers for the synchronous and asynchronous modes given in (2.15).

Appendix B. The Gray–Scott model. We now derive the nonlinear algebraic equation
(2.20) characterizing N -spot quasi-equilibria for the GS model (1.2) when D = D0/ν � 1. In
addition, we derive the NLEP (3.1a) with multipliers (3.34) determining the linear stability on
an O(1) time-scale of these patterns. Since the approach is very similar to that in Appendix
A we only briefly sketch the analysis here.

In the asymptotic construction of N -spot quasi-equilibria for the GS model (1.2) we obtain
the same core problem (A.1) near the jth spot, while in place of (A.2), the outer solution for
u now satisfies

Δu− u = −1 +
2π

√
D

A
N∑
i=1

Si δ(x − xi) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω ,(B.1a)

u ∼ 1

A√
D

[
Sj log |x− xj |+D(Sj) +

Sj
ν

]
, as x → xj , j = 1, . . . , N ,(B.1b)
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where ν ≡ −1/ log ε. The solution to (B.1) is u(x) = −2π
[
A√

D
]−1∑N

i=1 SiG(x;xi), where

G(x;xi) is the reduced-wave Green’s function satisfying

ΔG− 1

D
G = −δ(x− xi) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ,(B.2a)

G(x;xi) = − 1

2π
log |x− xi|+R(xi) + o(1) , as x → xi .(B.2b)

By matching the local behavior of u as x → xj with the far-field behavior of the solution to each
core problem, we derive in place of (A.5) that, in terms of Gji ≡ G(xj ;xi) and Rj ≡ R(xj),

(B.3) Sj + 2πν

⎛
⎝SjRj +

N∑
i �=j

SiGji

⎞
⎠+ νD(Sj) = νA

√
D , j = 1, . . . , N .

For the parameter range D = D0/ν with ν 
 1 we estimate G(x;xi) ∼ D0/[ν|Ω|] +O(1),
R(xi) ∼ D0/[ν|Ω|] +O(1). Then, upon defining μ ≡ 2πND0/|Ω|, (B.3) becomes

(B.4) Sj +
μ

N

N∑
i=1

Si +O(ν) + νD(Sj) ∼
√
νD0A =

√
νμ

(
A
√

|Ω|
2πN

)
, j = 1, . . . , N .

This suggests that Sj = O(
√
ν) 
 1. We then look for a symmetric N -spot quasi-equilibrium

for which Sj =
√
νS0 for j = 1, . . . , N . We use the small-S asymptotics in (A.6) to estimate

D(Sj) ∼ b/[
√
νS0]. In this way, (B.4) reduces for ν 
 1 to the nonlinear algebraic equation

for S0 given in (2.20) of section 2.3.
Next, we examine the linear stability on an O(1) time-scale of the N -spot symmetric

quasi-equilibrium solution, denoted by ve and ue. We linearize (1.2) about ue, ve to obtain
the eigenvalue problem (A.8) in which τλ is replaced by (1 + τλ). By considering only
locally radially symmetric perturbations near the jth spot we derive the inner problem (A.10)
provided that the consistency condition (A.11) holds. The outer problem for the perturbation
in u is given by (A.13), where we replace τλ/D in (A.13a) with (1 + τλ)/D. The solution to
this problem is given in (A.14), where Gλ(x;xi) is the Green’s function now defined by (3.3).

By asymptotically matching the inner problem for the eigenfunction to the outer problem,
we obtain (A.16) in terms of the Green’s matrix Gλ. For the parameter range where D =
D0/ν � 1 with ν 
 1, we can then repeat the analysis in (A.17)–(A.19) to derive the vector
NLEP (A.20), where S0 is related to the feed-rate parameter A through the nonlinear algebraic
equation (2.20).

By diagonalizing this vector NLEP by using the eigendecomposition of Gλ as in (A.21),
we readily derive (A.22) in which α is replaced by b/S2

0 . In this way, we obtain the NLEP
(3.1a) with multipliers (3.34).

When D = D0/ν and τ = O(1), we can easily recover the conventional NLEP problem
given by (1.4a) with the two multipliers in (2.21) for the synchronous and asynchronous modes.
To do so, we use

Gλ =
D0N

ν(1 + τλ)|Ω|E + G0 +O(ν) , E ≡ 1

N
eeT ,
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for ν 
 1 to estimate the eigenvalues κλ,i of Gλ as κλ,1 ∼ D0N/ [ν(1 + τλ)|Ω|] and κλ,i = O(1)
for i = 2, . . . , N . By substituting these expressions into (3.34) we readily obtain (2.21).

Appendix C. The Gierer–Meinhardt model. We now derive the NLEP (3.1a) with
multipliers (3.1b) determining the linear stability on an O(1) time-scale of N -spot quasi-
equilibria for the GM model (1.1), valid for arbitrary τ . Our approach is different than in
Appendix A in that we follow [27] and develop only a leading-order theory in ν for the regime
D = D0/ν. We set D = D0/ν with ν = −1/ log ε and write (1.1) as

(C.1) vt = ε2Δv − v + v2/u , τut =
D0

ν
Δu− u+ ε−2v2 , x ∈ Ω .

To leading order in ν, we first construct an N -spot quasi-equilibrium solution for (C.1).
In the inner region near x = xj we define y = ε−1(x− xj) with ρ = |y| and look for a locally
radially symmetric solution in the form v ∼ Vj(ρ) and u ∼ Uj(ρ). From the steady-state
equations of (C.1), we get on 0 < ρ <∞ that Vj and Uj satisfy

(C.2) ΔρVj − Vj + V2
j /Uj = 0 , Vj → 0 as ρ→ ∞ ; ΔρUj =

ν

D0
V2
j ,

where Δρ ≡ ∂ρρ + ρ−1∂ρ. For ν 
 1, we expand Uj = Uj0 + νUj1 + · · · , to obtain that
Uj0 is a constant. Then, from the first equation in (C.2) we get Vj ∼ Uj0w, where w(ρ)
is the ground-state solution (1.4c). From the second equation in (C.2) we conclude that
ΔρUJ1 = −U2

j0w
2/D0, which yields the far-field behavior

(C.3) Uj1 ∼ −U2
j0

D0
b log ρ+O(1) , as ρ→ ∞ ; b ≡

∫ ∞

0
ρw2 dρ .

By matching the far-field of each inner solution UJ to an outer solution, we get the outer
problem for u

D0

ν
Δu− u = −2πb

N∑
i=1

U2
i0δ(x − xi) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω ,(C.4a)

u ∼ Uj0 −
U2
j0b

D0
− ν

(
U2
j0b

D0
log |x− xj |+O(1)

)
, as x → xj , j = 1, . . . , N ,(C.4b)

where ν ≡ −1/ log ε. Upon expanding u = u0 + νu1+ · · · , we obtain that u0 is a constant and
that u0 = Uj0 − U2

j0b/D0 for j = 1, . . . , N . We obtain that u1 satisfies

D0Δu1 = u0 − 2πb

N∑
i=1

U2
i0δ(x − xi) , x ∈ Ω ; ∂nu1 = 0 , x ∈ ∂Ω ,(C.5a)

u1 ∼ −
(
U2
j0b

D0
log |x− xj|+O(1)

)
, as x → xj , j = 1, . . . , N .(C.5b)
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From the divergence theorem, we require that u0|Ω| = 2πb
∑N

i=1 U2
i0. In this way, we obtain

that Uj0 for j = 1, . . . , N satisfies the nonlinear algebraic system

(C.6)
2πb

|Ω|
N∑
i=1

U2
i0 = Uj0 −

bU2
j0

D0
, j = 1, . . . , N .

For a symmetric N -spot quasi-equilibrium solution we set Uj0 = U0 for j = 1, . . . , N . From
(C.6) we obtain that

(C.7) U0 =
D0

b(μ + 1)
, where μ ≡ 2πND0

|Ω| , b ≡
∫ ∞

0
ρw2 dρ .

Then, from (C.5), u1 = 2πbU2
0D

−1
0

[∑N
i=1G0(x;xi) + ū1

]
, where G0 is the Neumann Green’s

function of (A.4) and ū1 is a constant.
Next, we examine the linear stability of N -spot symmetric quasi-equilibria, denoted by ve

and ue. Upon introducing u = ue + eλtη and v = ve + eλtφ into (C.1) and linearizing, we
obtain the eigenvalue problem

(C.8) ε2Δφ− φ+
2ve
ue
φ− v2e

u2e
η = λφ ,

D0

ν
Δη − (1 + τλ)η = −2ε−2veφ , x ∈ Ω ,

with ∂nφ = ∂nη = 0 on ∂Ω. In the inner region near the jth spot, where ve ∼ U0w(ρ) and
ue ∼ U0 with ρ = ε−1|x− xj |, we look for a leading-order locally radially symmetric solution
of the form φ ∼ Φj(ρ) and η ∼ Nj(ρ). From (C.8) we get in terms of the local operator L0 of
(1.4b) that on 0 < ρ <∞,

(C.9) L0Φj −w2Nj = λΦj , ΔρNj = −2U0ν

D0
wΦj ,

provided that τ satisfies ε2τλν/D0 
 1 (see (A.11). We then expand Φj = Φj0 + · · · and
Nj = Nj0 + νNj1 + · · · to obtain that Nj0 is a constant and that ΔρNj1 = −2U0wΦj/D0.
This yields that Nj has the far-field behavior

(C.10) Nj ∼ Nj0 − ν

[
2U0

D0

(∫ ∞

0
ρwΦ0j dρ

)
log ρ+O(1)

]
, as ρ→ ∞ .

Upon matching the far-field behavior of the inner solution Nj to an outer solution, we
obtain that the outer problem for η is

Δη − ν

D0
(1 + τλ) η = −4πU0ν

D0

N∑
i=1

(∫ ∞

0
ρwΦ0i dρ

)
δ(x − xi) , x ∈ Ω ; ∂nη = 0 , x ∈ ∂Ω ,

(C.11a)

η ∼ Nj0 − 2U0

D0

(∫ ∞

0
ρwΦ0j dρ

)
− ν

[
2U0

D0

(∫ ∞

0
ρwΦ0j dρ

)
log |x− xj|+O(1)

]
, as x → xj ,

(C.11b)
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for j = 1, . . . , N . The solution to (C.11a) is

(C.12) η =
4πU0ν

D0

N∑
i=1

Gλ(x;xi)

(∫ ∞

0
ρwΦ0i dρ

)
,

where Gλ is the reduced-wave Green’s function satisfying (3.3). By enforcing that the non-
singular term of the local behavior of η as x → xj agrees with that in (C.11b), we determine
N0 ≡ (N1, . . . , NN )T as

(C.13) N0 =
2U0

D0
[I + 2πνGλ]

(∫ ∞

0
ρwΦ0 , dρ

)
,

where Gλ is the Green’s matrix of (3.2). Upon using (C.7) for U0/D0, and substituting (C.13)
into the first equation of (C.9), we obtain the vector NLEP

(C.14) L0Φ0 − w2H
∫∞
0 ρwΦ0 dρ∫∞
0 ρw2 dρ

= λΦ0 , where H ≡ 2

μ+ 1
(I + 2πνGλ) .

By diagonalizing this vector NLEP, as in (A.22), we obtain the NLEP (3.1a) with the N
multipliers in (3.1b).

REFERENCES

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, 9th ed., Dover, New York.
[2] W. Chen and M. J. Ward, Oscillatory instabilities and dynamics of multi-spike patterns for the one-

dimensional Gray–Scott model, European J. Appl. Math., 20 (2009), pp. 187–214.
[3] W. Chen and M. J. Ward, The stability and dynamics of localized spot patterns in the two-dimensional

Gray–Scott model, SIAM J. Appl. Dyn. Syst., 10 (2011), pp. 582–666.
[4] A. Doelman and F. Veerman, An explicit theory of pulses in two component, singularly perturbed,

reaction-diffusion equations, J. Dynam. Differential Equations, 27 (2015), pp. 555–595.
[5] A. Doelman, R. A. Gardner, and T. Kaper, A Stability Index Analysis of 1-D Patterns of the Gray

Scott Model, Mem. Amer. Math. Soc. 155, AMS. Providence, RI, 2002.
[6] A. Doelman, R. A. Gardner, and T. Kaper, Large stable pulse solutions in reaction-diffusion equa-

tions, Indiana Univ. Math. J., 50 (2001), pp. 443–507.
[7] FlexPDE6, PDE Solutions, http://www.pdesolutions.com.
[8] J. Gou and M. J. Ward, Asymptotic analysis of a 2-D model of dynamically active compartments

coupled by bulk diffusion, J. Nonlinear Sci., 16 (2016), pp. 979–1029.
[9] D. Iron, J. Rumsey, M. J. Ward, and J. Wei, Logarithmic expansions and the stability of periodic

patterns of localized spots for reaction-diffusion systems in R
2, J. Nonlinear Sci., 24 (2014), pp. 857–

912.
[10] T. Kolokolnikov and M. J. Ward, Reduced wave Green’s functions and their effect on the dynamics

of a spike for the Gierer–Meinhardt model, European J. Appl. Math., 14 (2003), pp. 513–545.
[11] T. Kolokolnikov, M. J. Ward, and J. Wei, Spot self-replication and dynamics for the Schnakenberg

model in a two-dimensional domain, J. Nonlinear Sci., 19 (2009), pp. 1–56.
[12] T. Kolokolnikov, M. J. Ward, J. Wei, The existence and stability of spike equilibria in the one-

dimensional Gray–Scott model: The low feed rate regime, Stud. Appl. Math., 115 (2005), pp. 21–71.
[13] M. C. Kropinski and B. D. Quaife, Fast integral equation methods for the modified Helmholtz equation,

J. Comput. Phys., 230 (2011), pp. 425–434.
[14] C. S. Lin, W. M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J.

Differential Equations, 72 (1988), pp. 1–27.

http://www.pdesolutions.com


1022 J. C. TZOU, M. J. WARD, AND J. C. WEI

[15] Y. Nishiura, Far-from Equilibrium Dynamics, Translations of Mathematical Monographs, Vol. 209, AMS,
Providence, RI, 2002.

[16] J. E. Pearson, Complex patterns in a simple system, Science, 216 (1993), pp. 189–192.
[17] I. Rozada, S. Ruuth, and M. J. Ward, The stability of localized spot patterns for the Brusselator on

the sphere, SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 564–627.
[18] P. H. Trinh and M. J. Ward, The dynamics of localized spot patterns for reaction-diffusion systems on

the sphere, Nonlinearity, 29 (2016), pp. 766–806.
[19] J. C. Tzou and M. J. Ward, Effects of open systems on the existence, dynamics, and stability of spot

patterns in the 2D Brusselator model, Phys. D, to appear.
[20] J. Tzou, Y. Nec, and M. J. Ward, The stability of localized spikes for the 1-D Brusselator reaction

diffusion model, European J. Appl. Math., 24 (2013), pp. 515–564.
[21] V. K. Vanag and I. R. Epstein, Localized patterns in reaction-diffusion systems, Chaos, 17 (2007),

037110.
[22] F. Veerman, Breathing pulses in singularly perturbed reaction-diffusion systems, Nonlinearity, 28 (2015),

pp. 2211–2246.
[23] S. Xie and T. Kolokolnikov, Moving and jumping spot in a two dimensional reaction-diffusion model,

Nonlinearity, to appear.
[24] M. J. Ward and J. Wei, Hopf bifurcation of spike solutions for the shadow Gierer–Meinhardt model,

European J. Appl. Math., 14 (2003), pp. 677–711.
[25] M. J. Ward and J. Wei, Hopf bifurcation and oscillatory instabilities of spike solutions for the one-

dimensional Gierer–Meinhardt model, J. Nonlinear Sci., 13 (2003), pp. 209–264.
[26] J. Wei, On single interior spike solutions of the Gierer–Meinhardt system: Uniqueness and spectrum

estimates, European J. Appl. Math., 10 (1999), pp. 353–378.
[27] J. Wei and M. Winter, Spikes for the two-dimensional Gierer–Meinhardt system: The weak coupling

case, J. Nonlinear Sci., 11 (2001), pp. 415–458.
[28] J. Wei, Pattern formations in two-dimensional Gray–Scott model: Existence of single-spot solutions and

their stability, Phys. D, 148 (2001), pp. 20–48.
[29] J. Wei and M. Winter, Asymmetric spotty patterns for the Gray–Scott model in R

2, Stud. Appl. Math.,
110 (2003), pp. 63–102.

[30] J. Wei and M. Winter, Existence and stability of multiple spot solutions for the Gray–Scott model in
R

2, Phys. D, 176 (2003), pp. 147–180.
[31] J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57

(2008), pp. 53–89.
[32] J. Wei, Existence and stability of spikes for the Gierer–Meinhardt system, in Handbook of Differential

Equations, Stationary Partial Differential Equations, Vol. 5: M. Chipot, ed., Elsevier, New York,
2008, pp. 489–581.

[33] J. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Appl. Math.
Sci. Ser. 189, Springer, New York, 2014.


	Introduction
	A class of NLEPs with a bilinear multiplier
	The Gierer–Meinhardt model
	The Schnakenberg model
	The Gray–Scott model

	Anomalous scaling of the Hopf bifurcation threshold
	The Gierer–Meinhardt model
	The Schnakenberg model
	The Gray–Scott model

	Refined HB thresholds for multispot patterns
	HB thresholds for moderately small : Numerical validation
	Discussion
	Appendix A. The Schnakenberg model
	Appendix B. The Gray–Scott model
	Appendix C. The Gierer–Meinhardt model


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


