

A mobility shift assay for DNA detection using nanochannel gradient electrophoresis

Michael A. Startsev,[†] Martin Ostrowski,[‡] Ewa M. Goldys,[†] and David W. Inglis^{*¶}

Department of Physics and Astronomy, Macquarie University, Sydney, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, and Department of Engineering, Macquarie University, Sydney

E-mail: david.inglis@mq.edu.au

*To whom correspondence should be addressed

[†]Department of Physics and Astronomy, Macquarie University, Sydney

[†]Department of Chemistry and Bimolecular Sciences, Macquarie University, Sydney

¶Department of Engineering, Macquarie University, Sydney 2109, Australia

Keywords: Nanofluidics, electrophoresis, mobility, PNA

Total number of words: 3300

1 **Abstract**

2 Conventional detection of pathogenic or other biological contamination relies on amplification
3 of DNA using sequence-specific primers. Recent work in nanofluidics has shown very high
4 concentration enhancement of biomolecules with some degree of simultaneous separation.
5 This work demonstrates the combination of these two approaches by selectively
6 concentrating a mobility shifted hybridization product, potentially enabling rapid detection of
7 rare DNA fragments such as highly specific 16s rDNA. We have performed conductivity
8 gradient electrofocusing within nanofluidic channels and **have shown** concentration of
9 hybridized peptide nucleic acids (PNA) and DNA oligomers. We also show selectivity to single
10 base-pair mismatch on 18-mer oligos. This approach may enable sensitive optical detection
11 of small amounts of DNA.

12

13 **1 Introduction**

14 Detection of DNA fragments is a significant problem in a wide range of areas including food
15 safety, medicine and forensics. The most common techniques for detecting DNA fragments
16 involve amplification of specific sequences using polymerase chain reaction (PCR) primers.
17 However there is ongoing interest in alternative, rapid techniques that avoid amplification and
18 are compatible with the lab-on-a-chip, especially for point of care systems where time is
19 critical. Samples that contain a low concentration of the DNA fragments are of special interest
20 and present an even greater challenge in such lab-on-chip systems because of slow reaction
21 kinetics and low signal levels.

22 **Rapid detection of analytes with low concentration is usually addressed by reporter signal
23 amplification. This includes catalysis (horseradish peroxidase, [1 Liu and Zhang, 2015]) and
24 fluorescence enhancement [2 Zhao 2015]. These techniques are vital, but sensitivity is
25 always limited by sample concentration. Pre-concentration prior to separation can help but
26 may lead to precipitation of high abundance compounds, disrupting the separation process.**

27 To overcome this, simultaneous concentration and separation of target molecules is required.
28 A number of groups have pursued this approach which can potentially yield vastly improved
29 sensitivity. Simultaneous concentration and separation has been achieved with micro-
30 organisms using dielectrophoresis [3], with chiral compounds using temperature gradient
31 focusing [4], and with small molecules using a bipolar electrode [5]. DNA in complex mixtures
32 has been separated and concentrated using isotachophoresis [6]. Recently, nanofluidic
33 approaches to simultaneous concentration and separation have been demonstrated, including
34 separation of amino acids by depletion zone isotachophoresis [7], and previous work by our
35 group to separate proteins [8,9].

36 In this work we show that gradient electrophoresis in a nanofluidic channel described in
37 reference [8] can be used to focus DNA and, simultaneously, detect a single base pair

1 mismatch between a PNA-DNA hybrid. This was demonstrated with a **16S ribosomal RNA**
2 **gene sequence from *Bacillus cereus*, a model organism.** This binding to a PNA label makes it
3 possible to identify a specific DNA sequence initially present in the sample at low levels.

4 **2 Theory**

5 Figure 1 shows how changes to molecular mobility upon molecular binding can be exploited
6 in order to make DNA:PNA hybridization detectable within the nanochannel conductivity
7 gradient scheme.

8 Unlike DNA, PNA does not carry a charge on its backbone so it has an electrophoretic
9 mobility μ_{PNA} that is expected to be lower than the mobility of DNA. Successful hybridization of
10 PNA to DNA results in a modified charge to mass ratio of the DNA:PNA complex. PNA binds
11 to nucleic acids in a complimentary sequence-specific fashion. Using PNA as a molecular
12 probe instead of oligonucleotides allows for robust and highly specific binding [10-14] while
13 producing a complex with a mobility shift that can potentially be separated by electrophoretic
14 techniques.

15 The separation and concentration principle is shown in Figure 1. The electroosmotic force
16 varies along the channel length due to changing field strength and double layer thickness.
17 The electroosmotic velocity at the channel surface also varies; however, conservation of
18 mass requires that net fluid transport for a rectangular channel must be the same along the
19 channel length. The validity of this simplistic model can be assessed by considering the
20 Péclet number (Equation 1).

$$21 \quad P_e = Lu/D \quad (1)$$

22 The Péclet number is the ratio of advective transport to diffusive transport. In our case the
23 length scale, L , is the channel thickness (100 nm), D is the diffusion coefficient for the
24 oligomer (approximately $6 \mu\text{m}^2/\text{s}$), and u is the net velocity, which is of the order $50 \mu\text{m}/\text{s}$. This
25 gives the value of $P_e = 0.8$. This means that the macromolecule's **diffusive transport is slightly**
26 **more significant than the advective transport, and therefore the substantial complexities of the**
27 **electroosmotic and electrophoretic forces, which vary with depth are averaged by diffusion.**
28 This allows us to assume that the electroosmotic (EO) force is constant along a rectangular
29 nanochannel. The blue line in the figure indicates this constant, depth-averaged EO force.
30 The force from electrophoresis (EP) is variable, being stronger at the low conductivity (high
31 electric field) end of the nanochannel. For negatively charged particles EP has the opposite
32 direction to EO. A stable equilibrium position exists for all negatively charged molecules
33 where net force is equal to zero (indicated by the intersection of the EO and EP lines for that
34 particular molecular mobility). Molecules with higher mobility are trapped closer to the low salt,
35 cathodic end, while low mobility molecules are trapped closer to the high salt, anodic end.
36 The differences in mobility result in molecules with different charge to molecular weight ratio
37 being trapped in different locations along the channel (dotted cyan). It is reasonable to expect

1 three different focusing positions within the channel: one for PNA, one for DNA and one for
2 PNA:DNA hybrid molecules. The width of the focus band is increased by diffusion and
3 reduced by a steep conductivity gradient. While the above analysis is qualitative, more
4 complete theoretical treatments of the opposing electroosmotic and electrophoretic effects in
5 the nanochannel are given in References [15-17].

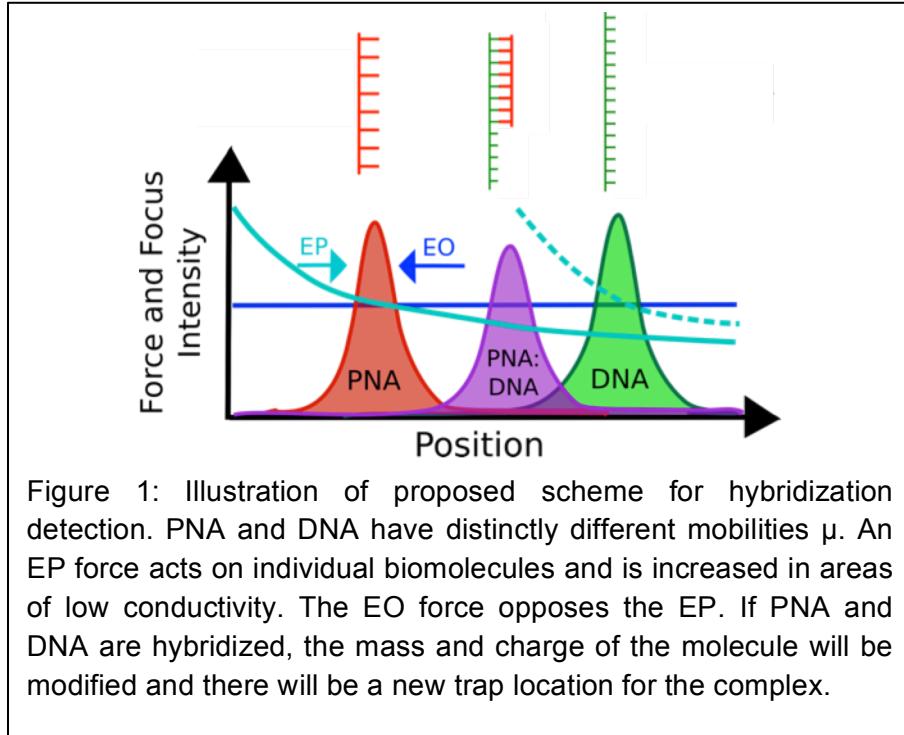
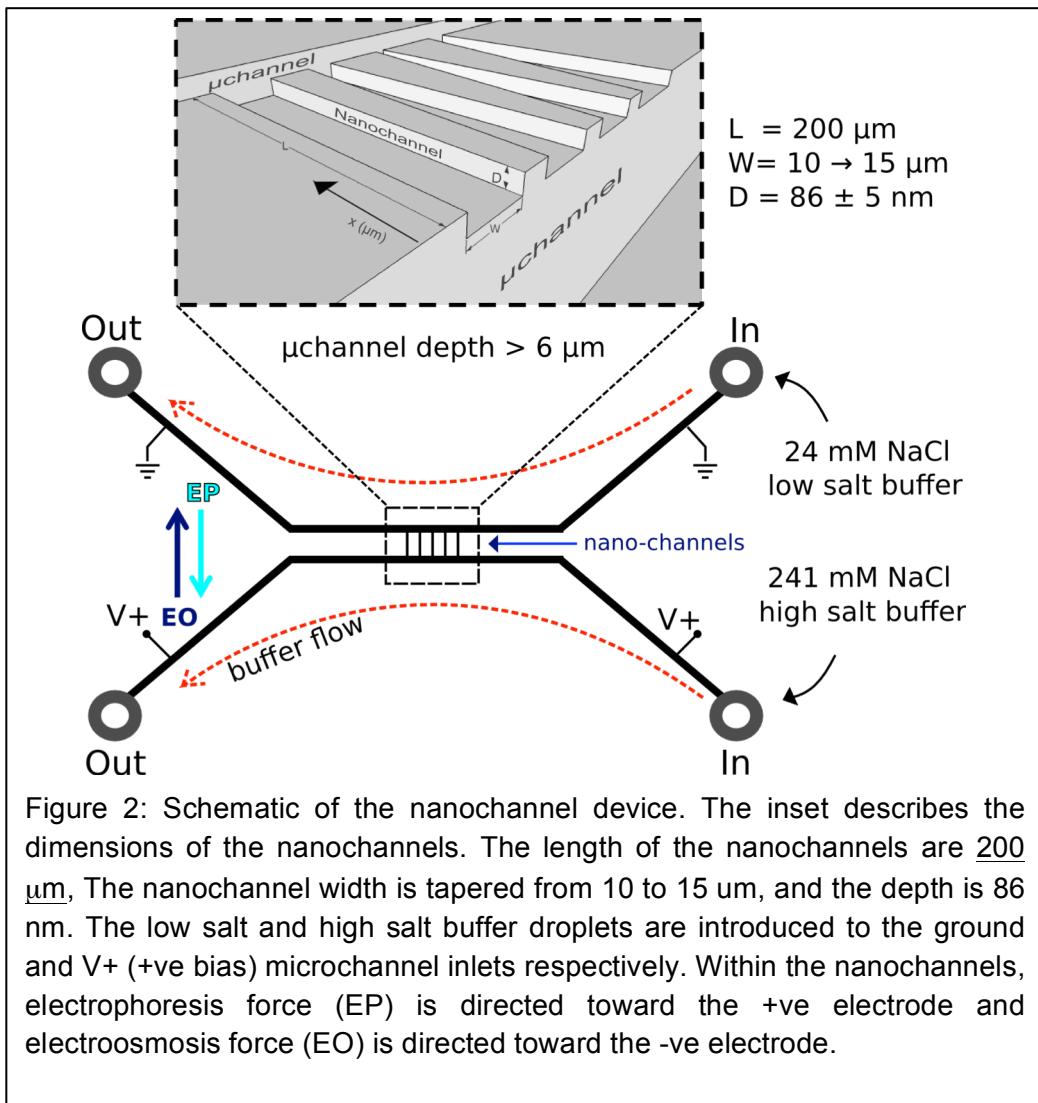


Figure 1: Illustration of proposed scheme for hybridization detection. PNA and DNA have distinctly different mobilities μ . An EP force acts on individual biomolecules and is increased in areas of low conductivity. The EO force opposes the EP. If PNA and DNA are hybridized, the mass and charge of the molecule will be modified and there will be a new trap location for the complex.

6
7

8 3 Materials and methods


9 3.1 Device fabrication

10 The device is very similar to that used in reference [8], a p-type, 1-10 Ohm.cm, $<100>$ silicon
11 wafer with a 50 nm oxide was used as a substrate. The microchannels were
12 photolithographically patterned and the oxide was etched using CF_4 plasma. The wafer was
13 coated with SU-8 and office tape to protect it during sand-blasting of through-holes. After
14 cleaning, the microchannels were wet-etched using potassium hydroxide and 2-propanol to a
15 depth of 6 to 10 μm . The remaining oxide was then stripped using hydrofluoric acid and
16 approximately 120 nm of new thermal oxide was grown. Nanochannels of 200 μm length
17 which connect the microchannels were then photolithographically patterned and etched in
18 CF_4 plasma to a depth of 86 ± 4 nm. The nanochannels tapered from 15 μm wide at the high
19 salt (+ve) and to 10 μm wide at the low salt (-ve) microchannel. Finally, a 300 μm thick, 76.3
20 mm wafer of thermal expansion matched borosilicate glass was bonded to the silicon wafer
21 using a reverse RCA procedure.

2 **3.2 Conductivity gradient electrofocusing**

3 The conductivity gradient was formed by introducing a constant flow of two different
4 phosphate buffers through the two microchannels. This fixed either end of the nanochannels
5 to dissimilar salt concentrations. The positive microchannel received phosphate buffer with
6 NaCl added to raise the concentration to 241 mM NaCl. The negative microchannel received
7 phosphate buffered saline that had been diluted to 24 mM NaCl. A conductivity gradient
8 therefore exists in the nanochannel, and remains there under small voltages and where ion or
9 mass transport by electroosmosis in the nanochannels does not overwhelm mass transport in
10 the microchannels [18].

11 Buffer flow at the microchannel ports was driven by surface tension. Approximately 10 μ l
12 droplets of buffer or analyte sample were pipetted onto the inlets of each microchannel. Every
13 10-20 minutes, the droplets were refreshed to minimize changes in salt concentration due to
14 evaporation. Between each trial the channels were flushed with de-ionized water and
15 phosphate buffer solutions that matched the conductivity to be used in the next trial. Silver-
16 silver chloride wire electrodes were placed in the inlet and outlet ports of both high salt and
17 low salt microchannels.

1
2

3 3.3 Analyte preparation

4 A single-stranded 18-mer PNA probe (probe 1) (Invitrogen - Life Technologies) was selected
 5 to compliment the 16S ribosomal RNA **gene** sequence **from** *B. cereus* (ATCC14579 strain).
 6 The sequence (00393 [19]) was chosen from several candidates on ProbeBase according to
 7 the criteria for successful PNA production. These rules eliminated all but one sequence due **to**
 8 **the possibility** of self hybridization of the probe. A single base mismatch strand of PNA probe
 9 was also generated (probe 2) along with a single stranded oligonucleotide identical to the 16S
 10 rRNA sequence (Oligo). The sequences of PNA-probe-1, PNA-probe-2 and rRNA-mimic oligo
 11 **are** displayed in Table 1.

Name	Terminus	Sequence	Terminus
Probe 1	Alexa 555	5' - TG CGG TTC AAA ATG TTA T - 3'	-
Probe 2	Alexa 555	5' - TG CGG TTG AAA ATG TTA T - 3'	-
Oligo	-	3' - AC GCC AAG TTT TAC AAT A - 5'	fluorescein 488

1 Table 1: Oligonucleotide:PNA Hybridization sequences.

2 The oligonucleotides and probes were imaged under an inverted fluorescence microscope
3 with a cooled monochromatic camera and filter cubes with single band excitation filters. In this
4 way, the signals from fluorescein-labeled oligonucleotides and Alexa Fluor-labeled PNA could
5 be observed independently of one another. Hybridization of PNA and oligonucleotides was
6 straightforward due to both species having single stranded base pair chains. The process
7 consisted of mixing PNA and oligonucleotides at 1:1 molar ratio, **followed by** heating and
8 mixing for 10 minutes. After cooling at 4°C for 30 minutes, the hybridized analyte was taken to
9 be used in either gel electrophoresis trials or nanochannel electrofocusing trials.

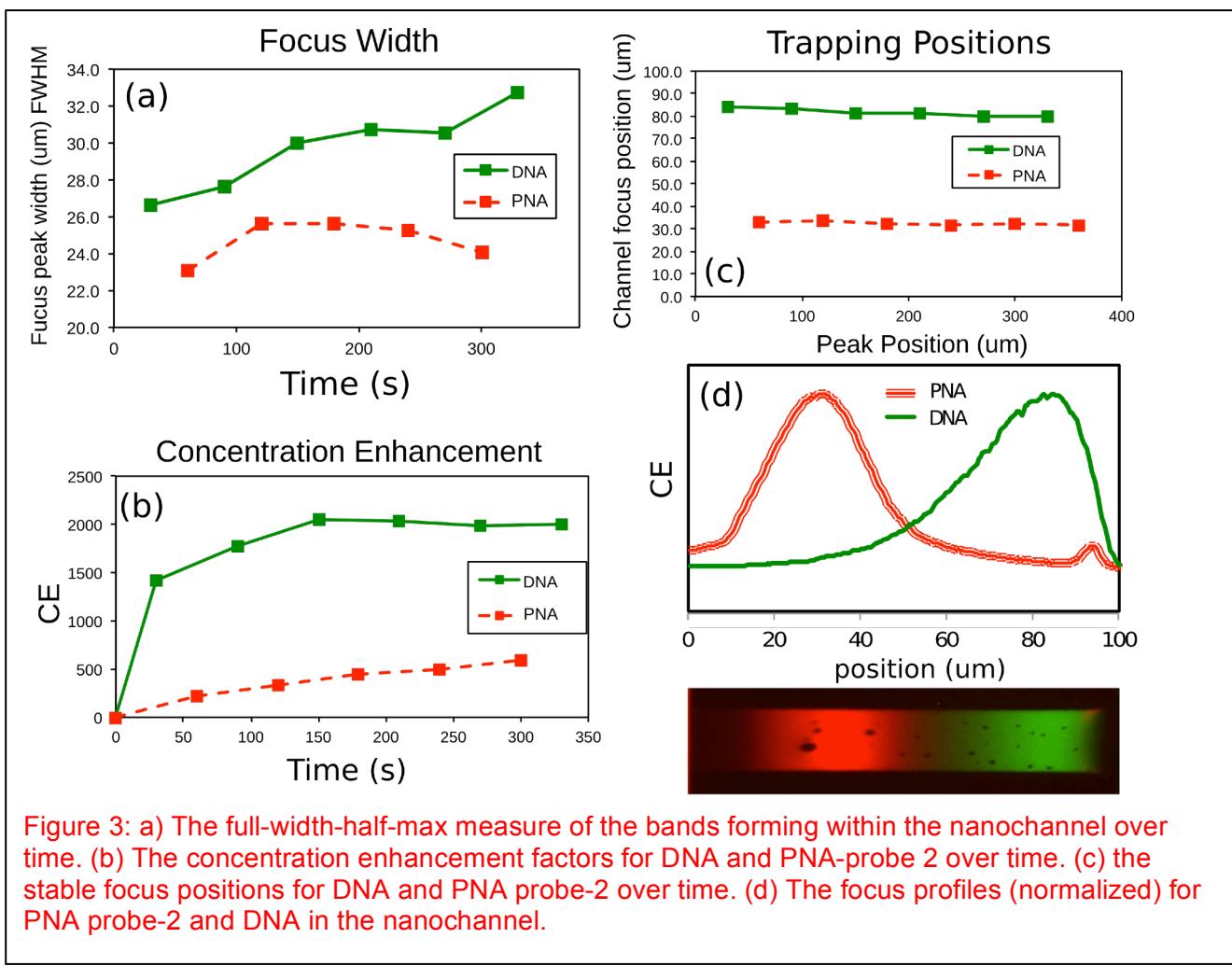
10 **3.4 Genomic DNA shearing**

11 The mobility shift method requires that an 18mer PNA oligo changes the mobility of a DNA
12 fragment. To do this, the fragment must be small. Shearing of DNA also enables more reliable
13 transport through the nanochannels. *B. cereus* DNA was sheared on a Covaris E220
14 Ultrasonicator at the University of New South Wales (UNSW). The length of the resultant DNA
15 was estimated with an Agilent Bioanalyzer 2100 and confirmed to be a distribution spanning
16 between 50 - 250 bp, peaking at 150 bp.

17 **3.5 Polyacrylamide gel electrophoresis**

18 While agarose gels can successfully separate DNA fragments of 50-20,000 bp,
19 polyacrylamide gels have a considerably higher resolving power for small 5-500 bp fragments
20 of DNA and are more suitable for analyzing **short DNA fragments**. Polyacrylamide pre-cast
21 mini-PROTEAN 10% TBE electrophoresis gels were purchased from Biorad inc. Analytes
22 were mixed into a standard electrophoresis loading buffer, composed of 60% glycerol, 10 mM
23 Tris, 60 mM EDTA and a colorant, bromophenol blue at 0.2% set to a pH of 8.3. Then the
24 electrophoresis gel cast was inserted into a Mini-PROTEAN Tetra electrophoresis cell and a
25 voltage of 100 V was applied for 50 minutes. An image of the focusing was then taken under
26 an open Ultra-Lum transilluminator with a standard cell phone camera (Android Nexus 5).

27


28 **4 Results and discussion**

29 **4.1 Separation of sheared genomic DNA from PNA**

30 Before attempting to hybridize single stranded DNA (ssDNA) oligos to PNA, simultaneous
31 concentration and separation of sheared double stranded *B. cereus* DNA (dsDNA) and PNA
32 probe 2 was performed within the nanochannels at 0.4 V. Both DNA and PNA were supplied
33 through the high conductivity (241 mM NaCl) end of the channel. During focusing,
34 fluorescence images of Alexa Fluor 555 (bound to PNA probes) and SYBR Green I (which
35 specifically binds to dsDNA) were taken in alternating 30 s intervals at 1 s exposure.

36

1 The dsDNA was not heated to the point of denaturing, so PNA had no access to binding sites
 2 and hybridization is not expected. Figure 3 shows the behaviour of the PNA and dsDNA
 3 bands. dsDNA shows a much higher concentration enhancement than PNA (2000 vs 500 for
 4 DNA and PNA respectively). This difference could be attributed to a higher initial
 5 concentration of SYBR green compared with Alexa Fluor bound to the PNA probe. Note that
 6 when run at the same time as the sheared DNA, the PNA is trapped much closer to the (high
 7 salt, left) side, than when PNA is run by alone or with complimentary ssDNA oligos. The
 8 reason for this is not clear.
 9

10
 11 Figure 3: a) The full-width-half-max measure of the bands forming within the nanochannel over
 12 time. (b) The concentration enhancement factors for DNA and PNA-probe 2 over time. (c) the
 13 stable focus positions for DNA and PNA probe-2 over time. (d) The focus profiles (normalized) for
 14 PNA probe-2 and DNA in the nanochannel.

15 4.1 Detection of DNA:PNA complex

16 Figure 4 shows our central result, the detection of a single base pair mismatch in a DNA:PNA
 17 complex. We repeatedly use the nanochannel device to focus oligo:PNA-Probe-1 hybrids and
 18 oligo:PNA-Probe-2 hybrids at 12- μ M:12- μ M concentration ratios (both single stranded). Three
 19 non-successive repetitions of the focusing data were collected and the degree of “overlap”
 was calculated in order to quantify the difference made by a G-G base-pair mismatch (full
 sequences shown in Table 1). Overlap is defined as the percentage of the area under the
 curve that is shared by both red and green intensity plots. Clearly separated peaks would

1 show a very low level of overlap, whereas a single molecular species with two fluorescent
2 tags would show 100% overlap. The blue column in Figure 3 titled “Probe-2 Oligo (mix)” was
3 used as a control in which the oligonucleotide PNA had minimal time to hybridize before
4 focusing, having experienced no heating or shaking, as it was combined immediately before
5 pipetting on to the chip.

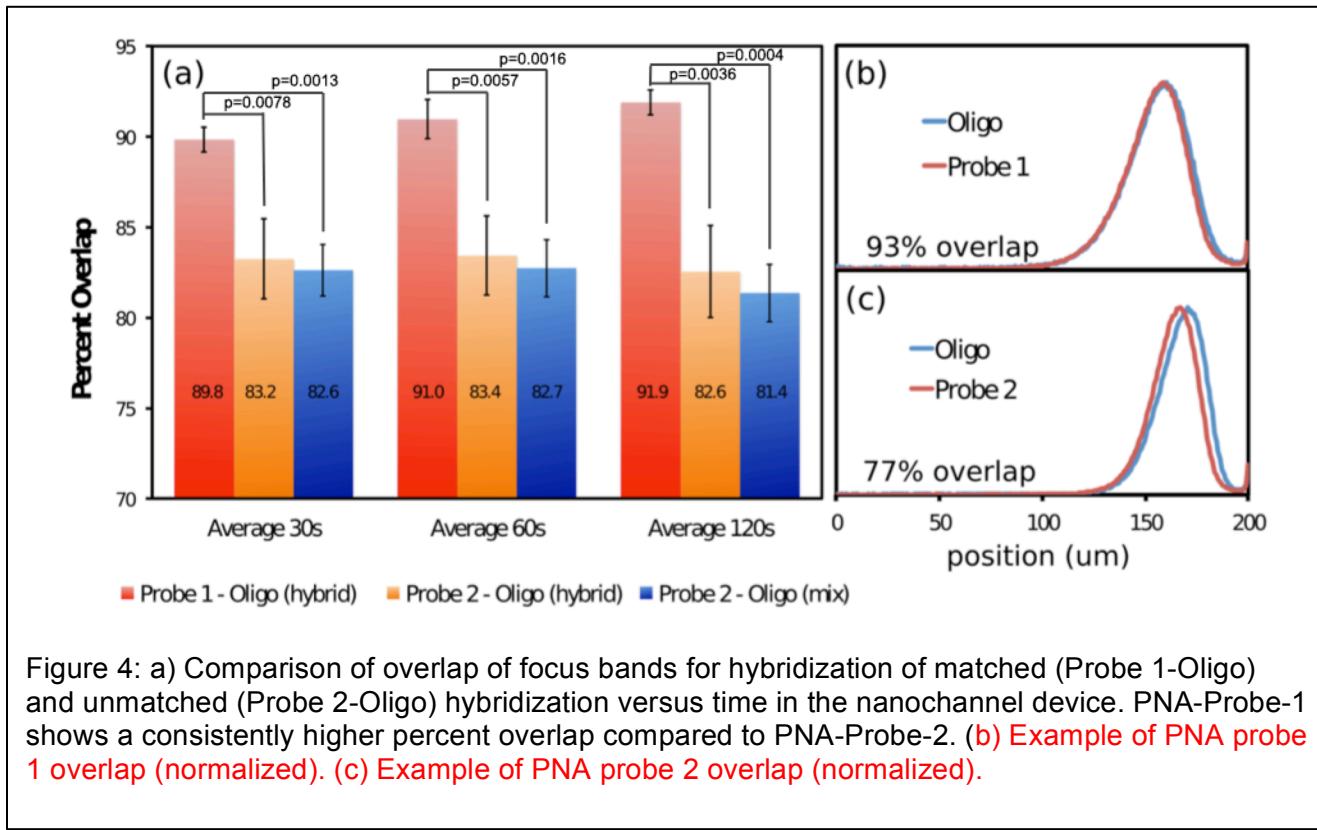
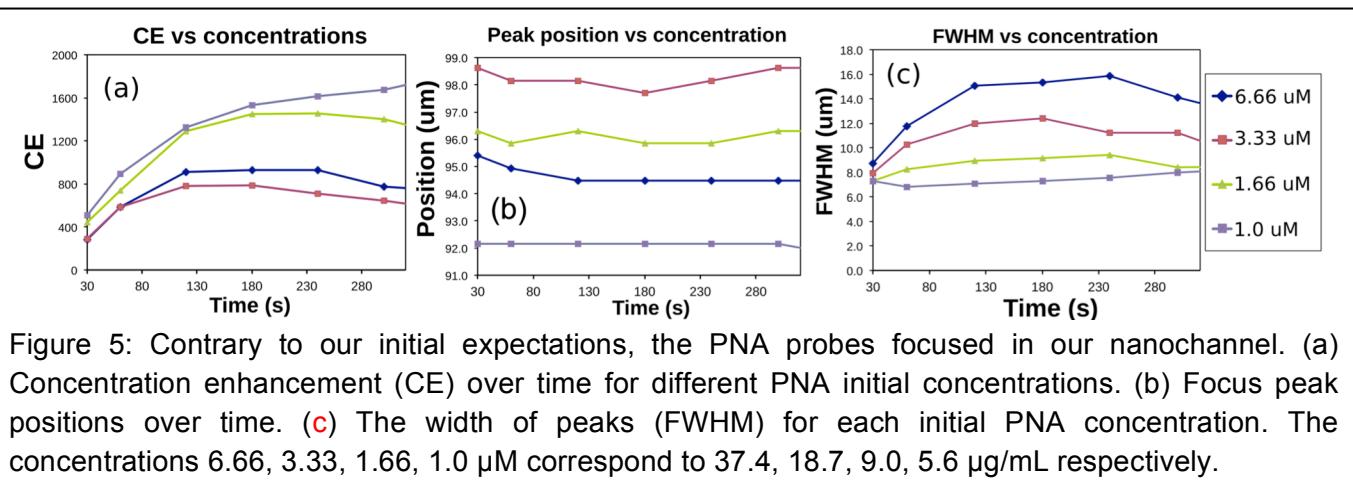


Figure 4: a) Comparison of overlap of focus bands for hybridization of matched (Probe 1-Oligo) and unmatched (Probe 2-Oligo) hybridization versus time in the nanochannel device. PNA-Probe-1 shows a consistently higher percent overlap compared to PNA-Probe-2. (b) **Example of PNA probe 1 overlap (normalized).** (c) **Example of PNA probe 2 overlap (normalized).**

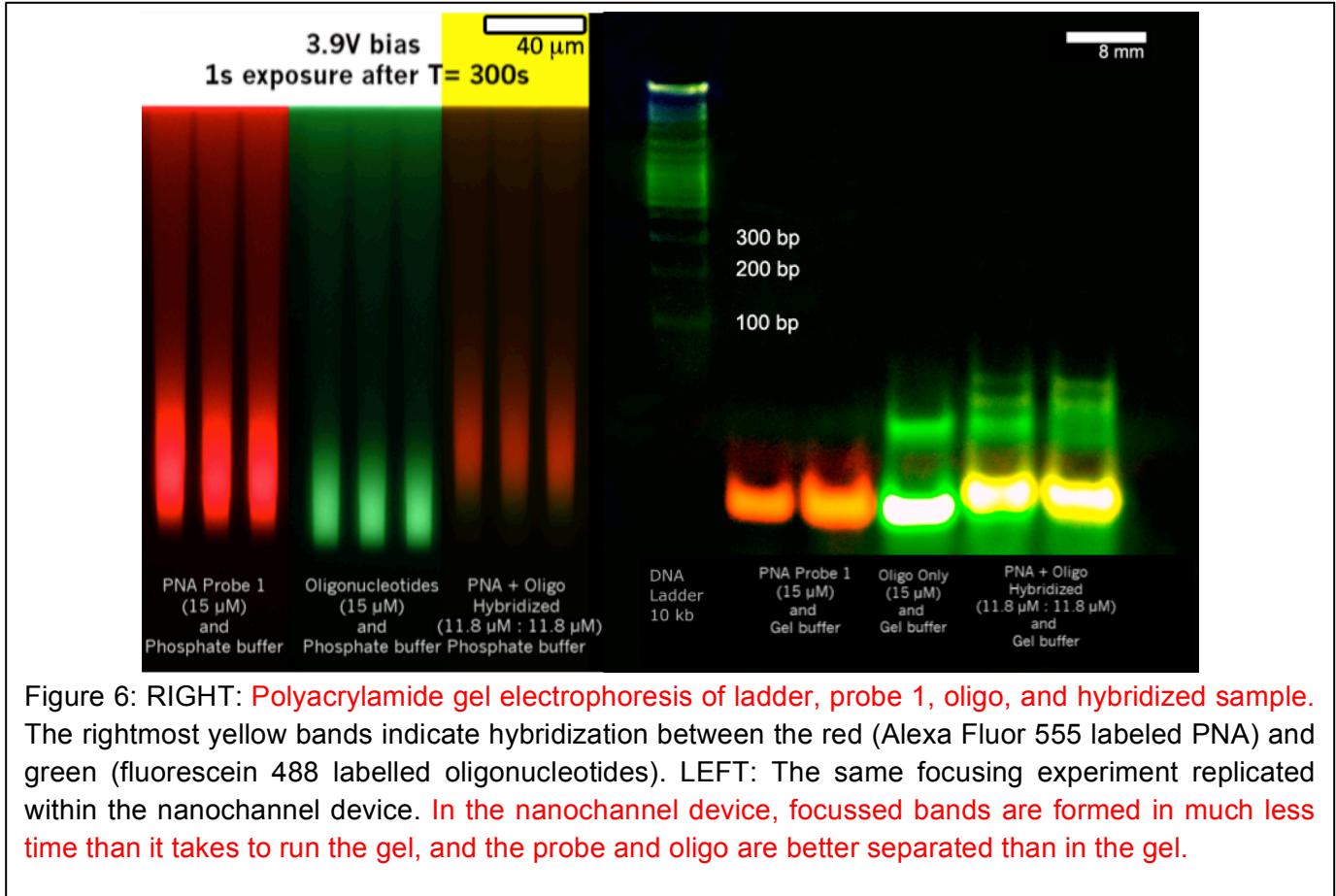

6
7 The oligo:PNA-probe-1 overlap was consistently around 90% at all time points (30,60 and 120
8 s) (Figure 4). The oligo:PNA-probe-2 hybrid with the G-G base pair mismatch was found to be
9 around 83%, and the control group (mismatch sequence with no hybridization) produced
10 peaks which had approximately 82% overlap.

11 The degree of separation between the mismatched fragments (orange and blue bars) is small,
12 but it is statistically greater than for the matched fragments (red bars), which show
13 approximately 90% overlap. This suggests the system is able to differentiate the single base
14 mismatch over an 18-mer oligo and 18-mer probe. This high level of specificity is desirable to
15 reduce the rate of false positives in detecting any dangerous pathogen. The roughly 80%
16 overlap for the mismatched set (orange and blue bars) is likely caused by the similar focus
17 position observed for the two molecules. Some overlap is also likely caused by the binding
18 affinity of the mismatch pair, which is significant. This could certainly be improved with an
19 experimental design using a probe with a substantially different electrophoretic behavior than
20 the target sequence. This could possibly be achieved using a positively charged fluorescent
21 label.

1
2 **4.2 PNA mobility characterization**

3 Figure 5 shows focusing data of various input concentrations of PNA when introduced into the
4 high salt (+ve) microchannel. Figure 5(a) shows that PNA at 1.0 μ M concentration yields the
5 highest concentration enhancement factor (CE). Here, CE is defined as the intensity of
6 fluorescence in the band divided by the intensity in the microchannel times the micro channel
7 to nanochannel depth ratio. Figure 5(b) shows the peak positions of each of the
8 concentrations of PNA, measured from the high salt end of the 100 μ m long nanochannel.
9 Figure 4(c) shows the full-width-half-max of the bands versus time. We expected PNA to carry
10 a slightly positive charge but observed that it focused in the nanochannels under an applied
11 positive voltage in much the same way as negatively charged DNA oligonucleotides of the
12 same length.

13



14
15
16 **4.4 Gel and nanochannel gradient electrophoresis**

17 Figure 6 shows results of nanochanel electrofocussing and gel electrophoresis of the pure
18 and hybridized samples over a range of concentrations. The right side shows a region of the
19 gel containing PNA probe 1, the oligonucleotide, and PNA hybridized to the oligonucleotide.
20 The gel electrophoresis bands are observed to run almost twice as far as the 200 bp band in
21 a dsDNA ladder. This is as expected for the oligonucleotides, but entirely surprising for the
22 PNA. The hybridized molecule unsurprisingly runs to about the same position, and shows a
23 high degree of overlap.

24 The left side of Figure 6 shows the same samples in the nanochannel device. In both the
25 nanochannel device and the gel, DNA and PNA behave very similarly. However we see in the
26 nanochannel that the DNA and PNA form peaks that are more **resolved** than in the gel. **The**
27 **short DNA oligos form a narrower band in the nanochannel than the sheared genomic DNA**
28 **(Figure 3).**

1 We observe that the PNA and DNA oligos behave in much the same way in both the
2 nanochannel device and the gel. One possible explanation is that the labeled PNA molecules
3 are acquiring negative charge within the buffers. While this effect needs further investigation
4 to be fully explained, it does not invalidate our key result, the differentiation of the match and
5 miss-match strands.

6

7

8 5 Concluding remarks

9 This work is motivated by the need to detect small amounts of free DNA and the potential of
10 detecting a mobility shift using simultaneous concentration and separation in a nanochannel.
11 We have demonstrated a novel nanofluidic focusing scheme to detect hybridization of peptide
12 nucleic acid (PNA) with DNA. A green 18-mer DNA oligo hybridized to a complementary red
13 18-mer PNA probe and produced a band with a high degree of red-green overlap (92%). This
14 overlap reduced to 83% when using a PNA probe with a single base pair mismatch
15 demonstrating that the system is capable of discriminating a single base pair mismatch.
16 Contrary to expectations, we found that PNA oligos behaved as negatively charged species,
17 focusing as well in the nanochannel as DNA and demonstrating the same electrophoretic
18 mobility in a polyacrylamide gel electrophoresis as the DNA oligos.

1 **Acknowledgement**

2 This work was supported by the Australian Research Council (DP110102207). Device
3 fabrication was carried out with assistance from the University of New South Wales node and
4 the South Australian node of the Australian National Fabrication Facility, established under
5 the NCRIS scheme. The authors declare no conflicts of interest.

6 **References:**

7 [1] Liu, F., Zhang, C., *Sensors and Actuators B: Chemical*, 2015, 209, 399-406.
8 [2] Zhao, H., Wang, L., Zhu, J., Wei, H., Jiang, W., *Talanta*, 2015, 138, 163-168.
9 [3] Moncada-Hernández H., Lapizco-Encinas B.H., *Anal. Bioanal. Chem.* 2010 396(5),
10 1805-16.
11 [4] Balss, K.M., Vreeland, W.M., Phinney, K.W., Ross D., *Anal. Chem.*, 2004, 76 (24),
12 7243–7249.
13 [5] Laws, D.R., Hlushkou, D., Perdue, R.K., Tallarek, U., Crooks, R.M., *Anal. Chem.*, 2009,
14 81(21), 8923–8929.
15 [6] Bercovici, M., Kaigala, G.V., Mach, K.E., Han, C.M., Liao, J.C., Santiago J.G., *Anal*
16 *Chem.* 2011, 83(11), 4110–4117.
17 [7] Quist, J., Janssen, K.G.H., Vulto, P., Hankemeier, T., van der Linden, H.J., *Anal. Chem.*,
18 2011, 83, 7910–7915.
19 [8] Inglis, D.W., Goldys, E.M., Calander, N.P., *Angew. Chem. Int. Ed.*, 2011, 50, 1–6.
20 [9] Startsev, M.A., Inglis, D.W., Baker M.S., Goldys E.M., *Analytical Chemistry*, 2013,
21 85/15, 7133-7138.
22 [10] Nielsen P.E., Egholm, M., Berg R.H., Buchardt, O., *Science*, 1991, 254(5037), 1497–
23 1500.
24 [11] Nielsen, P.E., Egholm, M. et al., *Current Issues in Molecular Biology*, 1999, 1(2),89–
25 104.
26 [12] Zhang, N. Apella, D.H., *Journal of Infectious Diseases*, 2010, 201(Supplement 1),
27 S42–S45.
28 [13] Nielsen, P.E., *Peptide Nucleic Acids: Protocols and Applications*. Horizon Bioscience.
29 Great Britain 2004.
30 [14] Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S.M., Driver, D.A., Berg,
31 R.H., Kim, S.K., Norden, B. and Nielsen, P.E., *Nature*, 1993, 365, 556-568.
32 [15] Hsu, WL., Harvie, D.J.E., Davidson, M.R., Jeong, H., Goldys E.M., Inglis D.W., *Lab*
33 *Chip*, 2014, 14(18), 3539-49.
34 [16] Hsu, WL., Inglis D.W., Startsev, M.A., Goldys E.M., Davidson, M.R., Harvie, D.J.E.,
35 *Analytical Chemistry*, 2014, 86, 8711-8718.
36 [17] Yuan, Z., Garcia, A. L., Lopez, G. P., Petsev, D. N., *Electrophoresis*, 2007, 28, 595–
37 610.
38 [18] Hsu, WL., Inglis, D.W., Jeong, H., Dunstan, D., Davidson, M.R., Goldys, E.M., Harvie,
39 D.J.E., *Langmuir*, 2014, 30(18), 5337-5348.
40 [19] Liu W.-T., Mirzabekov A. D., Stahl D. A., *Environ. Microbiol.*, 2001, 3, 619-629.