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Abstract Deterministic Lateral Displacement (DLD) is a microfluidic method of
separating particles by size. DLD relies on precise flow patterns to deliver high-
resolution particle separation. These patterns determine which particles are displaced
laterally, and which follow the flow direction. Prior research has demonstrated that
the lateral array boundaries can be designed to improve the uniformity of the criti-
cal size and hence separation performance. A DLD device with an invariant critical
size throughout is yet unknown. In this work we propose a 3D design approach. We
first represent the flow through the DLD as a 2D lattice of resistors. This is used to
determine the relative flow resistances at the boundaries that will deliver the correct
flux patterns. We then use the Lattice Boltzmann Method to simulate fluid flow in
a 3D unit cell of the DLD and measure the fluidic resistance for a range or typical
dimensions. The results of this work are used to create a new equation for fluidic re-
sistance as a function of post size, post height, and post spacing. We use this equation
to determine array geometries that should have the appropriate resistances. We then
design and simulate (in COMSOL) complete devices and measure fluid fluxes and
first flow-lane widths along the boundaries. We find that the first flow-lane widths
are much more uniform than in any devices described previously. This work provides
the best method for designing periodic boundaries, and enables narrower, shorter and
higher throughput DLD devices.
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1 Introduction

Deterministic Lateral Displacement (DLD) is a microfluidic method of separating
particles by size (Huang et al, 2004). In it, particles move through a periodic, 2D
array of obstacles at low Reynolds numbers Re (see fig. 1). The columns of obstacles
are arranged at a small angle 6 relative to the average flow direction. Particles larger
than a set critical size D, follow the columns of obstacles, while smaller particles (<
D.) follow the average flow direction, due to physical differences in particle-obstacle
interactions. More details are provided in two recent DLD reviews (McGrath et al,
2014; Salafi et al, 2019).

DLD relies on precise flow patterns to deliver high performance particle sepa-
ration. These flow lane patterns marked out by stagnation streamlines, in particular
the width of the flow lane adjacent to an obstacle, 3, is the principle determinant
of the critical particle size (D, ~ 28) (Inglis et al, 2006). Larger particles ‘bump’
on the obstacles, crossing streamlines while smaller particles stay within their flow
lanes. It is understood that finite-sized particles do not necessarily follow streamlines
(Doyeux et al, 2011); however, their paths are deterministic in the high Péclet num-
ber regime, and a goal for most DLD device designs is to have a consistent critical
particle separation size throughout an array.

If the width 3 is not consistent throughout, bi-modal particle separation will break
down. That is, similarly sized particles will be bumped in some regions and not in
others, ultimately leading to dispersion and poor separation performance. Vernekar
et al (2017) showed that anisotropic permeability of an array can cause local changes
to the effective array tilt and therefore changes to the first flow-lane width near the
entrance and exit regions of arrays. Pariset et al (2017) demonstrated that the critical
particle size varies near the edges of a DLD array and that, if the device is narrow, the
critical size over the entire device width is not uniform. Prior to that, Inglis (2009)
showed that the lateral array boundaries can be engineered to improve separation
performance near the boundaries.

In Inglis (2009), boundaries created by masking a straight microfluidic channel
wall onto the obstacle array caused the critical size to be zero in some regions and
as much as 170% larger than intended in other areas. The boundary problem was
partially solved by growing and shrinking gaps at the boundaries by the square root
of the desired flux through them. This solution showed promise in 2D simulations and
in experiments with beads much larger than the critical diameter. Feng et al (2017)
used a comparable approach and found a similar problem. Beads that are twice the
critical size bumped properly everywhere. But beads that are 48% above the critical
size stopped bumping when they were within 11 columns of a boundary. The 3D flow
pattern was also observed experimentally and showed significant deviations from the
ideal one, and one based on 2D designs.

Recently Ebadi et al (2019) proposed a modification to the equations used by In-
glis (2009) and Feng et al (2017). Rather than growing or shrinking boundary gaps
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Fig. 1 Schematic of DLD array having a row shift fraction € = 1/N with N = 3. Resistors are overlaid
onto the array. Resistances along the negative boundary are colored purple and along the positive boundary
they are yellow. ¢ is the unit of flux entering each vertical gap.

by the square root or cube root of the desired flux, they used 2D simulations to nu-
merically determine the correct power for a range of pillar sizes. Their work shows
improved consistency of critical size in 2D simulations, but the worst performing
regions still have up to 25% errors in flux.

The boundary problem has not yet been solved, and no solution for 3D devices has
ever been proposed. In this work, we model the DLD array as a rectangular lattice of
resistors and apply electrical circuit techniques to determine the relative resistance of
the fluidic gaps that would deliver the desired flux patterns. At low Reynolds number,
fluidic channels behave as linear resistors where the resistance (as in Ohm’s law) is
defined as the pressure drop along the length of a channel divided by the mass flow
rate through that channel. Fluidic resistance therefore has units of Pas/m? or N's/m>.

We use the lattice Boltzmann method to model a DLD unit cell and find its resis-
tance. These resistances are fitted to an explicit equation, and this equation, coupled
with the circuit analog is used to determine array geometries with the appropriate flu-
idic gaps. To validate the approach, we simulate complete devices using COMSOL
Multiphysics 3.5a and measure fluid transport and first flow-lane widths along the
boundaries. Our results are superior compared to all previous boundary treatements.

2 Model of flow through DLD

Fig. 1 shows an example array with a fractional row shift of € = tan 6 = 1 /3. We shall
model each horizontal and vertical gap as a resistor, placing nodes in the open regions.
The bulk resistors (white in Fig. 1) are R”. The left side is the negative boundary
(7) because particles are depleted there, these are coloured purple and numbered
n=1...N (where N = 3 in this example). The right side is the positive boundary (*)
because particles concentrate here, these are coloured yellow and similarly numbered
n=1...N.
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Each vertical white resistor carries one unit of flux ¢. Each horizontal white
resistor carries €¢ units of flux. The negative boundary resistors (purple) therefore
carry n€¢ units of flux. At the positive boundary, the vertical yellow resistors carry
¢ (2 — ne) units of flux.

Using simple circuit analysis, we can determine the resistance values needed to
ensure this pattern of currents/fluxes persists at all nodes, including boundary resis-
tances. The negative boundaries resistances are

Rb

R, =—,
né

n
and the resistances along the positive boundary are:

Rb

RF = .
2 —ne

n

The N gap on the positive boundary requires some special treatment. In the bulk,
the pressure drop in moving one unit down and one unit left is R”(¢ + £¢). The flux
entering the N gap at the top right of Fig. 1 must experience the same pressure drop
as it moves one unit down and one unit left. Therefore we have

O (R + Ry 1) = 9R'(1+ ),
Ry =R'(14€) =Ry 1

R]f, lat 18 normally equal to RY. This forces Ry = €R’. When ¢ is small, it may not
be possible to create a gap with such low resistance. In these cases, we must reduce
the value of R;(, lat- This gives a non-unique solution for the positive boundary where

or choose R}, . then

the designer must choose a value of Ry, and calculate R}, o dat

N lat®
calculate R}.

The result that R;\S must be small, whereas the preceding gap has a resistance
nearly equal to that in the bulk, is entirely new. However, it is similar to the ad-hoc
modifications made to the positive boundary in prior work (Inglis, 2009). The full

equation for the resistances along the positive boundary is then

2% (1)

Rb
R:[— n<N,
RP(1+&)—Rj,  n=N.

3 Resistance of arbitrary gap

Now that we have determined the necessary resistances, we must design 3D fluidic
gaps (resistors) that match. The resistance between any two nodes in the bulk of
the array shown in Fig. 1 can be determined through computational fluid dynamics.
We have used lattice Boltzmann (LB) simulations (Kriiger et al, 2017) at Re < 0.03
to determine the resistance between two nodes for a range of pillar sizes and array
depths (Fig. 2a). The Reynolds number is defined as the average flow velocity times
the gap size, divided by the kinematic viscosity. All pillars are cylindrical with € =
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Fig. 2 a) Example simulation domain (100 x 100 x 152Ax3) used to determine the resistance of a 3D
pillar array. D and T are varied, W and L are fixed. Flow is in the direction of L. b) Normalised resistance
plotted as a function of normalised thickness (7'/W) and pillar diameter (D/W). The normalised resistance
is the ratio of actual resistance to the resistance that would be found if the pillar were removed. c)/d) The
same data presented as 2D plots. Blue lines represent Eq. (2). Note the logarithmic axis and excellent
agreement over three orders of magnitude.

0. We assume that typical values for row shift fraction have a negligible effect on
resistance. Width W and length L of a unit cell are equal.

We use the BGK collision operator (with relaxation time set to 1.5A¢ in all sim-
ulations where At is the time step size). Obstacles and walls are modelled with the
half-way bounce-back scheme. The flow is driven by a constant body force, with pe-
riodic boundaries for the unit cell. The mesh sizes range from 100 x 100 x 52Ax°
(T/W =0.5) to 100 x 100 x 452Ax3 (T /W = 4.5) where Ax is the lattice spacing.
The extra 2 lattice units in the z-direction are no-slip boundary nodes. In each case
Ax =0.5um. To check for mesh invariance, we checked the resistance for a particular
geometry at 0.8 x and 2x the original mesh density. At twice the mesh density the
resistance was reduced by 0.03%, and at a the reduced mesh density the resistance
was reduced by 2%.

The resistance values measured from the LB simulations are used to create a new
equation for the resistance of a pillar array:

12uL aD\\¢ [ T\’

W, L, D, and T are defined in Fig. 2a, and u is the fluid viscosity. a, b, ¢ and d
are fitting parameters. The leading term 12uL/(WT?) is the resistance for a wide
rectangular channel, the planar Poiseuille result. The following terms modulate this
resistance as follows. As D approaches W, the gap goes to zero and the tangent func-
tion forces the resistance to infinity. The last term modulates the effect of the pillar
through the aspect ratio 7 /W: when T is larger than W, the effect of the pillar on the
unit cell’s resistance is amplified, and conversely, suppressed when T is less than W.

Fig. 2b and ¢ show the measured resistances as black dots and Eq. (2) as a surface
(blue lines). The resistance is normalised by the planar Poiseuille result 12uL/(WT?),
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so a value of 1 means the pillar has no effect on resistance. Fitting parameter values
were determined by minimising the sum of the squares of the relative error. Because
the data covers around three orders of magnitude, it is essential to use relative, rather
than absolute error. Values of a = 1.702, b = 0.600, ¢ = 2.682, d = 1.833, give an
excellent fit over the entire range used: 0.3 < D/W < 0.9, 0.5 < T/W < 4.5. The
standard deviation of error is 5%, and the normalised root mean square of percent
error is 1.4%. The maximum error is 10%. These fitting parameters do not appear to
have any physical significance, and we do not expect the equation to be a good fit for
ratios of D/W and T /W that are outside of the range used here.

Eq. (2) is also useful for predicting device-level throughput and resistance when
designing microfluidic devices that use pillar arrays including DLD and immuno-
capture devices (Nagrath et al, 2007; Gleghorn et al, 2010). Prior experimental efforts
to measure the resistance of pillar arrays highlighted that models based on porous
media do not accurately predict resistance of pillar arrays (Gunda et al, 2013).

4 Device Design

In the layout of a DLD device it is not practical to adjust the pillar diameter, or the
cell length, but only the gap size. To proceed, we assume Eq. (2) is valid for unit
cells where W is not strictly equal to L, but similar. To test our design approach we
have used Eq. (1) to determine boundary resistances for three DLD designs. Eq. (2)
cannot be explicitly solved for W. Therefore, to determine W for a given R (D, T, and
L are fixed), we use the MATLAB function ‘fzero’, which uses numeric interpolation
of a function.

Three designs are shown in Fig. 3. The row shift € for the three designs are 1/32,
1/12, and 1/8. The depth ranges from shallow (T /W = 0.75) to deep (T /W = 2),
and the post size is 0.5 and 0.65 times the pitch (D/W). The design presented in the
second row of Fig. 3 has a slightly asymmetric gap, a useful modification described
nicely by Zeming et al (2016). The pillar is elliptical giving a lateral gap of 20 um
and an axial or downstream gap of 17 pum.

Fig. 3 compares the proposed boundary treatment to the square root method (In-
glis, 2009), and the cube root method (Feng et al, 2017). The proposed method lies
in between the two prior solutions everywhere except at the N gap on the positive
boundary. Here, the pressure drop caused by a full unit of flux move laterally is so
large that the N' lateral gap must be made very large. By making it large, the the com-
bined pressure drop can be equal to the bulk array pattern. By including the lateral
resistances, the proposed treatment identifies this problem, and makes a significant
departure from all prior work.

Fig. 3f) shows the gaps for the positive boundary of an array with € = 8, a post
of 13 um, a gap of 7 um, and a pillar height of 40 um. The geometry for this array
is shown in Fig. 4. A symmetry plane is used so that only the top half of the array is
simulated. Fig. 4c) highlights the necessary modification to the N lateral gap. If this
lateral gap is not modified, Eq. (1) and Eq. (2) indicate that the gth gap must have a
width of 15.8 um. By increasing the width of the adjacent lateral gap by 2 um, the
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Fig. 3 Normalised gaps along negative and positive edges for three example DLD designs (all lengths
in microns): a)/b) N =32, D =20, W =L =40, T = 30, N lateral gap = 29. ¢)/d) N = 12, Dyyja1 = 23,
Diy =20, W = L =40, T =35, N lateral gap=22.e)f)N=8,D=13,W =L =20,T =40, N™ lateral
gap =9.

8™ boundary gap can have a more reasonable width of 10 um or 1.43 times the bulk
gap.

For the design shown in Fig. 3a) and b), where & = 1/32, we must widen the N
lateral gap. Without modification, Eq. (1) and Eq. (2) require the 32"¢ positive gap to
be more than 13 times wider than the bulk gap. This geometry is impractical to draw,
and would be outside the valid range for the model. For example D/W for this gap
would be less than 0.08, but the valid range is 0.3 < D/W < 0.9.

At the N'" positive boundary, the sum of R}, and Ry, ., is fixed, but the individual
values should be adjusted to make a reasonable layout and stay within the model’s
range. A MATLAB function (and stand-alone GUI) that calculates the boundary gaps
based on user input parameters is available for download in the supplementary mate-
rial and from the corresponding author.

5 Results

To validate the design process described above, we have simulated the two smaller
designs (N = 12 and N = 8) shown in Fig. 3 using COMSOL 3.5a. One of these
simulations is shown in Fig. 4. A typical simulation domain has 100,000 mesh ele-
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Nth |ateral gap

Fig. 4 The design and simulation results from Fig. 3e)/f). The inlet and outlet are linked by periodic
boundary conditions. Flow is driven by a body force at a slope of 1/8, Re < 1. a) The flow field at the
mirror symmetry plane (mid height). b) Orthogonal view of simulation domain. c) Detail view of N gap
on positive boundary showing how the resistance of the lateral gap is reduced.

ments and takes about 3 minutes to solve on a modest laptop (Intel Core i17-6600U @
2.60GHz) with 8 GB of memory.

We make two measurements to quantify the success of the new method (Fig. 5).
First, we integrate the flux moving laterally into (or out of) the boundary-adjacent
column at each row. In a perfect solution this should be equal to € times the flux
passing through a gap in the forward direction. For the 1/12 array it should be 8.33%,
and for the 1/8 array it should be 12.5%. This is shown as a horizontal dashed line in
Fig. 5a and b. We can achieve mesh invariance for this measurement with a uniform
meshing scheme.

For the second measurement in Fig. 5, we determine the width of the first flow-
lane () for each row at the positive and negative boundaries. Mesh invariance for
this measurement requires a coarse mesh throughout the array with a highly refined
mesh around the stall line of interest. The flow-lane width is measured in the gap at
the mid-depth (symmetry plane) and near the floor or ceiling (75 or 80% of the pillar
depth). The flow-lane width corresponding to a 2D quadratic flow profile is shown
with a horizontal dash-dot line.

The results are satisfactory, though the positive boundary shows a too large crit-
ical size just before the last row. The critical size at the first gap on the negative
boundary is also slightly too large. Fig. 5a) and b) show additional data from designs
where the boundary gap is given by the square root of the target flux. This method
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Fig. 5 Analysis of flow pattern and streamline positions for two devices detailed in Fig. 3. Left column
is for 1/8 array and right column for 1/12 array. a) and b) show the mass transport of the first flow-lane at
each boundary-adjacent gap. The ideal value is shown with a dotted horizontal line. The flux patterns for
devices created using the square-root rule are shown as black crosses. ¢)—f) show the width (normalised,
and in pum) of the first flow-lane () at the mid-plane and near the lid/floor.

gives a consistent critical size along the negative boundary of the thin 1/12 array
(Fig. 5b, > x’), but the critical size is non-uniform along the positive boundaries of
both example designs (Fig. 5b, "+).

We find that the width of the first flow-lane is larger near the floor/ceiling, with
a more pronounced difference for the device with shorter pillars (Fig. 5d, f). This is
consistent with Biagioni et al (2019) who found a slight increase in the first flow-lane
width at a plane near the floor or ceiling. Some variation in flow-lane width is likely
unavoidable, indicating that a perfect boundary (one that has the same flow-lane width
at all locations) is impossible.
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6 Conclusion

This work addresses a known problem in DLD separation devices—the disturbance
to flow patterns and critical size in the vicinity of array boundaries. A handful of
papers have sought solutions using 2-dimensional flow models. Here we use a more
complete model of the DLD array that includes forward and lateral fluidic resistance,
then use 3-dimensional flow simulations to create a boundary solution that is valid
over typical post size and height.

This work makes two significant contributions: 1) it provides a relatively simple
model for the resistance of a microfluidic pillar at low Reynolds number. This has
obvious utility here, but is also useful for determining the device-level resistance and
throughput of microfluidic devices. 2) It provides an improved solution to the DLD
boundary problem. Most notably it shows that the N gap on the positive boundary
must be large. The solution will provide better particle separation performance near
the DLD boundaries. This is important for narrow devices with small numbers of
columns. Narrow devices are critical in efforts to increase volume throughput though
parallelisation (Campos-Gonzalez et al, 2018).

Acknowledgements We thank Alison Skelley, Weibin Liang, and James Sturm for helpful discussions
about the DLD boundary problem. This work is supported by the Australian Research Council (DP160103442).

A Supplementary Material

‘D_Boundaries.m.txt’ is a Matlab function that takes inputs of pitch, post size, post height (depth), and
returns the boundary gaps as per the method described in this paper. A stand-alone graphical user interface
(GUI) to perform the same task without Matlab is available from the corresponding author.
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